Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Распространение радиоволн в земных условиях
Излучение радиоволн Любой колеблющийся электрический заряд является источником переменного электромагнитного поля, излучающего в окружающее пространство. Излучение зарядом электромагнитной волны можно пояснить следующим образом. Рассмотрим два проводящих шара, находящихся на расстоянии L друг от друга (рис. 1.3) [1]. Такая система называется электрическим диполем. После выключения генератора шары будут заряжаться и разряжаться. При этом по проводу L протекают токи зарядки и разрядки емкости, образованной шарами. Емкость шаров много больше емкости отрезков ab и cd провода L, поэтому током смещения между отрезками провода можно пренебречь. Можно считать, что ток проводимости, протекающий в проводе L, замыкается только через ток смещения, протекающий в пространстве между шарами. В этом случае амплитуда тока I вдоль провода L остается постоянной. Такой электрический диполь называют диполем Герца. На рис. 1.3 графически изображено распределение амплитуды тока вдоль провода диполя. На этом же рисунке показаны силовые линии электрического поля диполя для момента времени, когда шары заряжены. Рис. 1.3. Схема возникновения электромагнитной волны, излучаемой диполем Герца. Линии тока смещения расположены в пространстве так же, как и линии электрического поля. При работе генератора переменный ток смещения вызывает появление переменного-магнитного поля, силовые линии которого окружают линии тока смещения. В свою очередь переменное магнитное поле по закону электромагнитной индукции вызывает в окружающем пространстве появление переменного электрического поля и соответствующего тока смещения и т.д. Рассмотренный процесс распространяется в окружающей среде самоподдерживаясь. Если, например, выключить генератор, питающий диполь, то в окружающей среде продолжает распространяться возникшая электромагнитная волна - ток смещения вызывает переменное магнитное поле, которое, в свою очередь, создает переменное электрическое поле и ток смещения в соседних областях пространства. Если генератор, возбуждающий диполь, генерирует напряжение, изменяющееся по гармоническому закону U= Um sinω t, то и электромагнитное поле изменяется во времени по гармоническому закону с той же частотой ω. Скорость распространения фазы электромагнитной волны называют фазовой скоростью. Фазовая скорость электромагнитной волны в диэлектрике равна где µ - магнитная проницаемость среды; ε - диэлектрическая проницаемость среды. В свободном пространстве ε = ε 0= 8, 85·10-12 Ф/м, µ = µ0 = 4π ·10-7 Гн/м и \/ф 3·10-8 м/с, т.е. равна скорости света. Расстояние, которое проходит определенная фаза волны за время одного периода колебаний Т, называется длиной волны: . Поверхность, на которой фаза волны одинакова, называется фронтом волны. На больших расстояниях r от диполя при выполнении условия r > L фаза волны одинакова на поверхности сферы. Такая волна называется сферической. Диполь Герца обычно в качестве антенны не применяют. Однако любую проволочную антенну можно представить состоящей из элементарных отрезков провода, в пределах каждого из которых амплитуда тока может считаться неизменной. Такой отрезок называют элементарным электрическим вибратором, аналогичным диполю Герца. Строение атмосферы Земли В земных условиях радиоволны распространяются в атмосфере. Атмосферу разделяют по высоте на три области: тропосферу, стратосферу и ионосферу. Нижняя область - тропосфера простирается до высоты 7... 10 км в полярных районах и до 16... 18 км над экватором. Тропосфера переходит в стратосферу, верхняя граница которой находится на высоте около 50...60 км. Стратосфера отличается от тропосферы почти полным отсутствием водяного пара, осадки образуются только в тропосфере. Тропосфера и стратосфера влияют только на распространение УКВ. На высоте более 60 км воздух находится в ионизированном состоянии. Эту область называют ионосферой. Ионосфера в той или иной степени влияет на распространение радиоволн всех диапазонов, так как радиоволны вызывают в ней движение свободных зарядов. Главной причиной ионизации воздуха и образования ионосферы является излучение Солнца. Установлено, что ионизацию атмосферы могут вызвать только ультрафиолетовые лучи, имеющие длину волны меньше 0, 1 мкм. Ионизация атмосферы вызывается также потоком частиц (корпускул), испускаемых Солнцем. Коротковолновые ультрафиолетовые лучи и корпускулы не достигают тропосферы, и воздух в ней практически не ионизирован. Ионизация становится заметной на высотах более 50...60 км. Эксперименты показали, что в ионосфере имеется несколько слоев, от которых происходит отражение радиоволн, т.е. существуют несколько максимумов электронной концентрации. Рис. 1.4. Зависимость электронной концентрации в ионосфере от высоты.
На рис. 1.4 изображена типичная зависимость электронной концентрации N от высоты h для дневного времени летом, когда в ионосфере наблюдается наибольшее число слоев. Рассмотрим особенности ионосферных слоев. Слой D образуется в области, где сравнительно велика плотность газа и рекомбинация свободных зарядов происходит быстро. Поэтому этот слой существует только днем и очень быстро исчезает после захода Солнца, когда прекращается ионизирующее воздействие. Летом критическая частота слоя D, под которой понимается наибольшая частота радиоволны, отражающейся при вертикальном падении на ионосферу, больше, чем зимой. Слой отражает мириаметровые, километровые и частично гектометровые волны, более короткие волны проходят через него, частично в нем поглощаясь. Слой Е существует круглые сутки, но его электронная концентрация днем намного больше, чем ночью, и изменяется в соответствии с высотой Солнца над горизонтом. Слой Е днем, особенно летом, способен отражать дека метровые волны. Ночью декаметровые волны от слоя Е не отражаются. Гектометровые и более длинные волны отражаются от слоя в любое время года и суток. Зимой выше слоя Е существует только один максимум электронной концентрации - слой F. Его концентрация достигает максимума после полудня и минимума - утром. Летом слой F расщепляется на два слоя – F1 и F2. Электронная концентрация в слое F2 изменяется в течение суток менее сильно, чем в слое F зимой. Слой F отражает декаметровые и иногда длинные метровые волны. Помимо изменений состояния ионосферы, связанных с временем года и суток, существуют также регулярные изменения, обусловленные цикличностью солнечной активности. В годы максимума солнечной активности критические частоты слоя F возрастают в 2-3 раза по сравнению с годами минимума. Популярное:
|
Последнее изменение этой страницы: 2016-03-17; Просмотров: 1807; Нарушение авторского права страницы