Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Виды выборки, способы отбора и ошибки выборочного наблюдения ⇐ ПредыдущаяСтр 4 из 4
По способу отбора (способу формирования) выборки единиц из генеральной совокупности распространены следующие виды выборочного наблюдения:
Простая случайная выборка (собственно-случайная) есть отбор единиц из генеральной совокупности путем случайного отбора, но при условии вероятности выбора любой единицы из генеральной совокупности. Отбор проводится методом жеребьевки или по таблице случайных чисел. Типическая (стратифицированная) выборка предполагает разделение неоднородной генеральной совокупности на типологические или районированные группы по какому-либо существенному признаку, после чего из каждой группы производится случайный отбор единиц. Для серийной (гнездовой) выборки характерно то, что генеральная совокупность первоначально разбивается на определенные равновеликие или неравновеликие серии (единицы внутри серий связаны по определенному признаку), из которых путем случайного отбора отбираются серии и затем внутри отобранных серий проводится сплошное наблюдение. Механическая выборка представляет собой отбор единиц через равные промежутки (по алфавиту, через временные промежутки, по пространственному способу и т.д.). При проведении механического отбора генеральная совокупность разбивается на равные по численности группы, из которых затем отбирается по одной единице. Комбинированная выборка основана на сочетании нескольких способов выборки. Многоступенчатая выборка есть образование внутри генеральной совокупности вначале крупных групп единиц, из которых образуются группы, меньшие по объему, и так до тех пор, пока не будут отобраны те группы или отдельные единицы, которые необходимо исследовать. Выборочный отбор может быть повторным и бесповторным. При повторном отборе вероятность выбора любой единицы не ограничена. При бесповторном отборе выбранная единица в исходную совокупность не возвращается. Для отобранных единиц рассчитываются обобщенные показатели (средние или относительные) и в дальнейшем результаты выборочного исследования распространяются на всю генеральную совокупность. Основной задачей при выборочном исследовании является определение ошибок выборки. Принято различать среднюю и предельную ошибки выборки. Для иллюстрации можно предложить расчет ошибки выборки на примере простого случайного отбора. Расчет средней ошибки повторной простой случайной выборки производится следующим образом: cредняя ошибка для средней (11.1) cредняя ошибка для доли (11.2) Расчет средней ошибки бесповторной случайной выборки: средняя ошибка для средней (11.3) средняя ошибка для доли (11.4) Расчет предельной ошибки повторной случайной выборки: предельная ошибка для средней предельная ошибка для доли (11.5) где t - коэффициент кратности; Расчет предельной ошибки бесповторной случайной выборки: предельная ошибка для средней (11.6) предельная ошибка для доли (11.7) Следует обратить внимание на то, что под знаком радикала в формулах при бесповторном отборе появляется множитель, где N - численность генеральной совокупности. Что касается расчета ошибки выборки в других видах выборочного отбора (например, типической и серийной), то необходимо отметить следующее. Для типической выборки величина стандартной ошибки зависит от точности определения групповых средних. Так, в формуле предельной ошибки типической выборки учитывается средняя из групповых дисперсий, т.е. (11.8) При серийной выборке величина ошибки выборки зависит не от числа исследуемых единиц, а от числа обследованных серий (s) и от величины межгрупповой дисперсии: (11.9) Серийная выборка, как правило, проводится как бесповторная, и формула ошибки выборки в этом случае имеет вид (11.10) где - межсерийная дисперсия; s - число отобранных серий; S - число серий в генеральной совокупности. Все вышеприведенные формулы применимы для большой выборки. Кроме большой выборки используются так называемые малые выборки (n < 30), которые могут иметь место в случаях нецелесообразности использования больших выборок. При расчете ошибок малой выборки необходимо учесть два момента: 1) формула средней ошибки имеет вид (11.11) 2) при определении доверительных интервалов исследуемого показателя в генеральной совокупности или при нахождении вероятности допуска той или иной ошибки необходимо использовать таблицы вероятности Стьюдента, где Р = S (t, n), при этом Р определяется в зависимости от объема выборки и t. В статистических исследованиях с помощью формулы предельной ошибки можно решать ряд задач. 1. Определять возможные пределы нахождения характеристики генеральной совокупности на основе данных выборки. Доверительные интервалы для генеральной средней можно установить на основе соотношений (11.12) где - генеральная и выборочная средние соответственно; - предельная ошибка выборочной средней. Доверительные интервалы для генеральной доли устанавливаются на основе соотношений (11.13) 2. Определять доверительную вероятность, которая означает, что характеристика генеральной совокупности отличается от выборочной на заданную величину. Доверительная вероятность является функцией от t, где (11.14) Доверительная вероятность по величине t определяется по специальной таблице. 3. Определять необходимый объем выборки с помощью допустимой величины ошибки: (11.15) Чтобы рассчитать численность п повторной и бесповторной простой случайной выборки, можно использовать следующие формулы: (для средней при повторном способе); (11.16) (для средней при бесповторном способе); (11.17) (для доли при повторном способе); (11.18) (для доли при бесповторном способе). (11.19) 11.3. Популярное:
|
Последнее изменение этой страницы: 2016-03-22; Просмотров: 1198; Нарушение авторского права страницы