Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Механика Ньютона как программа исследований



В конце " Общего поучения" Ньютон предлагает четкую " программу исследований": с помощью силы тяготения она объяснит не только физические явления - такие, как падение тяжелых тел, орбиты небесных тел и приливы, - ученый считает, что благодаря ей можно реально понять электрические явления, оптические и даже физиологические. К сожалению, добавляет Ньютон, " об этом невозможно сказать в нескольких словах, и мы не располагаем достаточным количеством экспериментов для точного определения и доказательства законов, по которым действует этот электрический упругий дух". Ньютон попытался сам реализовать программу в области оптики: " Когда Ньютон предположил, что свет состоит из инертных частиц, - пишет Эйнштейн, - он был первым, кто сформулировал основу, из которой оказалось возможно дедуцировать большое число явлений посредством логико-математических рассуждений. Он надеялся, что со временем фундаментальные основы механики дадут ключ к пониманию всех явлений, так думали и его ученики вплоть до конца XVIII в.". Механика Ньютона стала одной из наиболее мощных и плодотворных исследовательских программ в истории науки: после Ньютона для научного сообщества " все явления физического порядка должны были быть соотносимы с массами по законам движения Ньютона". Реализация программы Ньютона продолжалась довольно долго, пока не натолкнулась на проблемы, для разрешения которых потребовалась новая научная революция.

Физика Ньютона исследует не сущности, а функции; она не доискивается до сути тяготения, но довольствуется тем, что оно есть на самом деле и что им объясняются движения небесных тел и земных морей. И однако Ньютон замечает в работе " Оптика": " Первопричина, разумеется, не является механической". Ограниченное и контролируемое опытом рассуждение и деизм - две основные составляющие наследства, которое эпоха Просвещения получит от Ньютона, в то время как материалисты XVIII в. изберут в качестве теоретической базы механицизм Декарта. Для последователей Декарта в мире нет пустоты, для Ньютона это не так: тела взаимодействуют " на расстоянии". Последователи же Декарта и Лейбниц увидят в этих таинственных силах, действующих на неограниченных расстояниях, возврат к старым " скрытым свойствам".

Открытие исчисления бесконечно малых величин и спор с Лейбницем

В первые годы учения в колледже Св. Троицы в Кембридже Ньютон занимался преимущественно математикой: арифметикой, тригонометрией и особенно геометрией, изучая ее по " Началам" Евклида, которые прочел с легкостью, и по " Геометрии" Декарта, стоившей ему гораздо больших трудов, особенно вначале. Как уже говорилось, Барроу быстро заметил выдающиеся способности своего ученика, особенно он оценил его новые идеи в области математики. И когда в 1669 г. он получил от Ньютона сочинение " Анализ с помощью уравнений с бесконечным числом членов", написанное в предыдущие три года, он отдал ему свою кафедру в Кембриджском университете. В действительности (и это важно в свете спора Ньютона с Лейбницем) первые работы Ньютона по математике написаны еще раньше. Через четыре года после " Анализа..." появляется трактат " Метод флюксий и бесконечных рядов" (Methodus fluxionum et seriarum infinitarum), который суммирует первые исследования. Это исследование бесконечно малых величин, т.е. речь идет о малых вариациях определенных величин, их отношений, позже названных производными дериватами, и их сумм под названием интегралов. При работе важным инструментом стала аналитическая геометрия Декарта, а именно: перевод кривых и поверхностей в алгебраические уравнения. Кроме того, он использовал исследования Франсуа Виета (1540-1603), особенно работу " Введение в аналитическое искусство", в которой разрабатывается приложение алгебры к геометрии посредством введения рудиментов буквенного счета с соответствующей символической записью. Для своих дальнейших математических исследований Ньютон использует работу " Ключ математики" Уильяма Отреда (1574-1660) и многие работы Джона Уоллиса (1616-1703).

Импульсом к исследованиям бесконечно малых величин послужили проблемы измерения твердых тел, т.е. стереометрия. Крупнейшим исследователем в этой области стал Бонавентура Кавальери (1598(? )-1647), описавший в своей работе " Геометрия, развитая новым способом при помощи неделимых непрерывного" (Geometria indivisibilibus continuorum nova quadam ratione promota), опубликованной в 1635 г., принцип, который сегодня носит его имя: если при пересечении двух тел плоскостями, параллельными некоторой заданной плоскости, получаются сечения равной площади, то объемы тел равны. Изучение бесконечно малых величин было подготовлено также работой Кеплера " Новая стереометрия винных бочек" (1615); активным распространителем метода Кавальери был Эванджелиста Тор-ричелли (1608- 1647). Пьер Ферма (1601-1665) дает методу более строгую математическую формулировку. Опираясь на наследие предшественников, Ньютон с самого начала ссылается на данные акустики и оптики, т.е. на те отрасли физики, которые он в то время изучал. И очень скоро в его математических трудах четко проявится физическая основа.

Первый итог исчислений бесконечно малых величин Ньютон опубликует позже, в 1687 г., в начале своего главного сочинения " Математические начала натуральной философии".

В 1711 г. выйдет сочинение, написанное в 1669 г., " Анализ с помощью уравнений с бесконечным числом членов"; в 1704 г., в качестве приложения к трактату " Оптика", увидит свет " Трактат о квадратуре кривых" - труд 1676 г.; вышеупомянутый " Метод флюксий и бесконечных рядов", написанный в 1673 г. на латинском языке, выйдет в английском варианте только в 1736 г., т.е. уже после смерти автора.

Но обратимся к теории, названной самим Ньютоном теорией переменных. Если в первых трудах он развивает " алгебраическое" изучение проблемы, особенно на базе трудов Ферма и Уоллиса, то вскоре основанная на знании физики, а точнее, механики интуиция укажет ему верное направление для разрешения проблемы. Благодаря этой концептуальной основе Ньютону удалось выйти за рамки определения линий только как совокупности точек: теперь он рассматривает их как траектории движения точки; в результате плоскости воспринимаются как движение линий, а объемные тела - как движение плоскостей, описанные через изменение ординаты, в то время как абсцисса растет с течением времени.

Для этого он вводит х, у, z, чтобы обозначить скорость точки в трех координатах-направлениях. Отсюда берут начало различные проблемы, и особенно две: как рассчитать отношения переменных при известных параметрах, и наоборот.

В частном случае механики: известно расстояние в функции времени, как вычислить скорость, и наоборот: при известных скорости и времени как вычислить пройденный путь? В современных терминах: вывести пространство из временных отношений и интегрировать в скорости. Не вдаваясь слишком в технические детали, необходимо тем не менее сказать, что Ньютону удалось доказать многие важные правила дифференциального и интегрального исчисления; кроме того, он ввел понятие второй производной (производной производной; в случае механики: ускорение) и производной любого порядка; он строго теоретически обосновал связь между про-

изводной и интегралом и решил первые дифференциальные уравнения (с одной неизвестной функцией). Из вышеперечисленного явствует, что механика внесла ощутимый концептуальный вклад в выработку новой математической теории. Ньютон рассматривал математику с точки зрения инструментальной концепции: математика для него служила языком описания природных явлений. В этом его позиция совпадала с позицией Гоббса.

Итак, теория Ньютона оказывается во власти своего особого происхождения. Ее формализованность (х, у, z - для функций; х, у, т - для производных; х0, у0, z0 - для дифференциалов) имеет большую ценность для специалистов по механике, в которой деривация относится ко времени и производные имеют фиксированный смысл (первая производная - скорость, вторая - ускорение), но оказывается негибкой и неплодотворной в других секторах науки. Кроме того, в формализации Ньютона нет символа для интеграла. Именно такие критические замечания были высказаны другим великим основателем исчисления бесконечно малых величин - Готф-ридом Вильгельмом Лейбницем (1646-1716).

Лейбниц приходит к той же проблеме иным путем. Он основывается на блестящих работах по аналитической геометрии (в том числе и неизданных) Блеза Паскаля. На математической, а не физической основе Лейбниц выводит теоретическое определение производной в точке кривой как углового коэффициента прямой линии, касательной в данной точке (то, что мы называем сегодня тригонометрической касательной (тангенсом) угла, который она образует с осью абсцисс); эта касательная прямая понимается как идеальная секущая в этой точке и в другой, бесконечно близкой к данной. С вышеизложенными рассуждениями связано хорошо известное, более распространенное и общеупотребительное в наши дни обозначение ах, dy - для дифференциалов переменных х и у, и dy/dx - для производной у к х. Кроме того, Лейбниц вводит заглавное S для обозначения интеграла; это обозначение также стало общеупотребительным. Во всем остальном его теория не очень отличается от теории Ньютона; более или менее аналогичны и результаты последующей ее разработки. Однако Лейбницу также недостает фундаментальной математической точности, ибо еще не упрочилось и не получило теоретического обоснования понятие " предела".

Концептуальные его основы уже были в " Арифметике бесконечного" Джона Валлиса, если пойти далее, эта идея присутствовала и в методе Евдокса Книдского (408-355 до н. э.) и с успехом применялась Евклидом и Архимедом для решения различных геометрических проблем. Однако строгое применение понятия на основе анализа бесконечно малых величин мы обнаружим лишь в XIX в. у Бернарда Больцано (1781-1848) и у Огюстена Луи Коши (1789- 1857). Работа Лейбница написана примерно в 1672-1673 гг., следовательно, позже или по крайней мере одновременно с трудом Ньютона. Однако публикация его основного труда " Новый метод максимумов и минимумов, а также касательных" относится к 1684 г.. т.е. на три года раньше публикации " Математических начал натуральной философии" Ньютона. Между Ньютоном и Лейбницем вспыхнул ожесточенный спор о приоритете открытия, но не станем на нем останавливаться.

Ньютон (тексты)


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 1164; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь