Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Реальны ли «сверхъестественные» состояния?



 

До недавнего времени квантовой механике удавалось избегать различных «мистических» состояний типа ЭПР-пары или «кота Шредингера». Это делалось, например, за счет той же статистической (ансамблевой) интерпретации. В рамках последней предполагалось, что состояния такого типа возможны лишь для ансамбля частиц, то есть одна частица никак не может находиться в нелокальной суперпозиции, а есть набор обычных частиц в различных состояниях.

Но что делать теперь, когда такие «сверхъестественные» состояния научились реализовывать для отдельных частиц, например, кубитов в квантовом компьютинге? Более того, такие «магические» состояния уже начали работать в технических устройствах.

На сегодняшний день в квантовой теории и в науке в целом сложилась парадоксальная ситуация. Физики обычно реалистично смотрят на мир и предполагают, что все физические понятия и величины, в том числе и вектор состояния, имеют под собой объективную основу. Но, занимая такую позицию, они вынуждены признать объективное наличие в окружающей реальности и всех следствий такого сопоставления. Иными словами — физики должны согласиться с объективным существованием нелокальных эффектов, «телепатии», как выражался Эйнштейн. Некоторые ученые не могут с этим смириться, и вынуждены тогда заявлять, что вектор состояния — это лишь математическое выражение, которое не имеет под собой реальной физической основы.

Парадокс ситуации заключается в том, что «материалисты», которые считают, что вектор состояния имеет под собой объективную основу, должны в итоге признать «магическую» (в широком смысле слова) природу реальности, с «телепатией» и другими нелокальными особенностями, непривычными для классических представлений. А тот, кто отстаивает незыблемость классических представлений, в которых нет места «магии», должен в итоге стать «идеалистом» и принять точку зрения, согласно которой вектор состояния — это лишь продукт нашего ума, не имеющий под собой реальной физической основы.

На какую позицию встать, каждый ученый решает индивидуально. Я придерживаюсь «материалистической» позиции с ее «магическим» следствием. И таких, как я, по всей видимости, немало. Другие же отстаивают «идеалистическую» позицию. Например, хорошо известный специалист по квантовой механике и уважаемый мною за его работы A. Перес. Он практически одновременно с Городецки предложил один из наиболее широко известных критериев квантовой запутанности — так называемый Перес-Городецки-критерий*, который часто еще называют PPT-критерий (positive partial transpose).

 

* Peres A. Phys. Rev. Lett. 77, 1413 (1996); Horodecki M., Horodecki P. and Horodecki R. Phys. Lett A 223, 1 (1996).

 

С философской точки зрения показательна его обзорная статья — A. Peres and D. R. Terno. Quantum information and relativity theory, Rev. Mod. Phys. Vol. 76. No. 1. January 2004. Р. 93–123. В ней он честно пишет: «Многие физики, возможно, большая часть, имеют интуитивный, реалистичный взгляд на мир и рассматривают квантовое состояние как физический объект. Его значение не может быть известно, но, в принципе, квантовое состояние физической системы было бы хорошо определено. <...> В этом обзоре мы твердо придерживаемся представления, что ρ [матрица плотности] — только математическое выражение, которое кодирует информацию относительно потенциальных результатов наших экспериментальных вмешательств. Последние обычно называются „измерениями“ — неудачный термин, который создает впечатление, что в реальном мире существует некое неизвестное свойство, которое мы измеряем».

Этот обзор интересен в свете обсуждаемых нами философских вопросов, поскольку в нем затрагиваются онтологические проблемы относительно понятия «состояние».

Уже из названия обзора следует, что A. Перес пытается сопоставить квантовую механику с классической физикой (в частности, с теорией относительности, то есть разделом классической физики). Он делает выбор в пользу классической физики и теории относительности, но при этом должен отказаться от того, что вектор состояния (матрица плотности) соответствует реальному объекту. Причем А. Перес справедливо отмечает, что объединение теории относительности и квантовой теории невозможно в принципе, как он пишет: «Онтологии этих теорий радикально различны». В итоге автор приходит к выводу, что «волновая функция — не физический объект. Это — только инструмент для вычисления вероятностей объективных макроскопических событий». То есть мнение A. Переса близко позиции И. фон Неймана. Причем, замечу еще раз, он честно говорит о том, что большинство физиков думают иначе. Я тоже отношу себя к последним, считая, что вектор состояния соответствует реальному физическому объекту со всеми вытекающими отсюда «сверхъестественными» последствиями (нелокальностями).

Другая распространенная позиция, основанная на статистической интерпретации квантовой механики, сейчас тоже сильно зашаталась. О каком ансамбле может идти речь, если сейчас научились создавать когерентные суперпозиционные состояния для отдельных частиц?

Если рассмотреть, как в квантовой механике формировалось представление о статистической (ансамблевой) интерпретации, то следует отметить, что в качестве отдельного состояния квантовая теория допускает суперпозицию различных альтернатив (нелокальное состояние, в котором нет какой-то конкретной локальной характеристики объекта). Это допущение противоречило классическим представлениям, и отсюда, по моему мнению, возникли ансамблевая интерпретация и статистический подход к вектору состояния. Здесь были задействованы хорошо известные представления Больцмана и Гиббса о статистическом ансамбле. Напомню, что в свое время для вычисления средних значений физических величин они, вместо временного усреднения в рамках одной системы, предложили рассматривать среднее по ансамблю, по совокупности большого числа соответствующим образом разупорядоченных систем. Они предложили мысленную конструкцию из совокупности систем, когда каждое допустимое состояние данной (одной) системы представлено в ансамбле отдельной системой, находящейся в стационарном состоянии. Каждая система из ансамбля является мысленной копией реальной системы в одном из допустимых ее состояний. Такое представление выглядит очень правдоподобно, однако к настоящему времени никто не знает, как сформулировать необходимые и достаточные условия строгой эквивалентности средних по ансамблю и временных средних.

Поскольку многим физикам мысль о том, что нелокальная система (суперпозиционное состояние) может реально существовать, казалась противоестественной, вспомнили о статистическом ансамбле, который по определению представляет собой мысленную конструкцию. То есть квантовую нелокальную суперпозицию состояний для данной системы заменили мысленным набором всех ее возможных классических состояний с данными вероятностями. Формально (количественно) результаты совпадают, но от реального физического объекта, единого и нелокального, перешли к мысленной конструкции, к ансамблю классических состояний. Какое-то время это помогало продержаться полуклассическим представлениям в квантовой механике. При этом многие абсолютизировали понятие «ансамбля» и предпочитали понимать под ним не мысленную конструкцию, а уже набор из реально существующих состояний.

Мое представление об ансамбле состояний ближе к точке зрения В. А. Фока, которая отражена в упоминавшейся ранее цитате из книги А. Л. Симанова: «В. А. Фок считает, что ψ -функция относится не к ансамблю частиц, а к отдельной частице, характеризуя вероятность того или иного состояния микрообъекта при данных условиях. Он вводит в описание состояния микрообъекта существенно новый элемент — понятие вероятности, а тем самым и понятие потенциальной возможности». И далее: «...Введение их отражает не неполноту условий, а объективно существующие при данных условиях потенциальные возможности». Следовательно, ψ -функция характеризует возможные состояния микрообъекта при определенном макроскопическом окружении. Эти возможные состояния представляют собой ансамбль. В действительность превращается одна из возможностей этого ансамбля».

Однако В. А. Фок продолжал оставаться в рамках полуклассических представлений о «состоянии». Например, в предисловии к книге Дирака «Принципы квантовой механики» он пишет: «Само понятие состояния трактуется по всей книге так, как если бы оно принадлежало атомному объекту самому по себе, в отрыве от средств наблюдения. Такая абсолютизация понятия „квантовое состояние“ приводит, как известно, к парадоксам. Эти парадоксы были разъяснены Нильсом Бором на основе представления о том, что необходимым посредником при изучении атомных объектов являются средства наблюдения (приборы), которые должны описываться классически».

Сейчас квантовая теория стала уже самодостаточной дисциплиной. В настоящее время она замкнута, и для нее нет никакой необходимости привлекать классические приборы. Наоборот, если мы вводим в рассмотрение классические объекты, то квантовая теория уже не может считаться по-настоящему квантовой, а становится лишь полуклассическим приближением. Поэтому широко известную копенгагенскую интерпретацию квантовой механики в лучшем случае можно рассматривать как полуклассический подход.

Если же вернуться к ансамблевой интерпретации, то она представляется мне одной из последних соломинок, за которую цепляются сторонники классической реальности. Она хоть как-то помогает держаться им в рамках привычных представлений об окружающем мире. Если убрать эту «зацепку», они рискуют «утонуть» в квантовой парадигме, что, видимо, не входит в их планы, поэтому они лелеют и оберегают свою «соломинку» от всяких посягательств, придумывая все новые аргументы «за». С моей точки зрения, ансамблевая интерпретация уже давно изжила себя, и нужно с этим смириться, а не тормозить науку, штопая «старые мехи», которые расползаются от брожения «молодого вина».

Квантовая теория имеет возможность количественно описывать физические процессы, объективно существующие в окружающей нас реальности, которые невозможно изучать в рамках классической физики. Это один из основных моментов, который я бы хотел подчеркнуть: независимо от интерпретаций квантовая теория имеет дело с реальными физическими процессами, которые не могут быть описаны классической физикой.

Квантовая теория расширяет наш взгляд на окружающую реальность, показывая, что системы, помимо известного нам предметного состояния, могут находиться в состояниях «противоестественных», невозможных с точки зрения классической физики, попросту нематериальных. И такие состояния — вовсе не плод воображения, не теоретические абстракции, не математические символы. Это вполне реальные объективные элементы реальности, и в последнее время ими научились манипулировать, управлять, получая привычный для нас «материальный» вид этих объектов лишь как частный случай, как одну из возможностей. Но объективность другой, запредельной стороны реальности, более широкое пространство ее возможных состояний от этого не исчезают.

Поэтому под объективной физической реальностью я понимаю нечто большее, чем привычная для нас реальность. Я включаю в это понятие и системы, находящиеся в нелокальном состоянии. В этом случае объективная реальность значительно расширяется и, как мне представляется, охватывает многое из того, что принято относить к магии, эзотерике, религии и т. д. Например, в этом представлении телепатия, телекинез, материализация и дематериализация, ясновидение, религиозные таинства, действие молитвы, эзотерические практики и т. п. становятся элементами объективной реальности, связанными с физическими процессами.

К объективным физическим процессам относится также деятельность сознания (не только человека) и возможность его функционирования на различных уровнях реальности. Сознание, с точки зрения квантовой механики, становится элементом физического мира, поскольку его деятельность непосредственно связана с изменением состояния системы, обладающей сознанием. Феномен сознания связан с последовательностью различных внутренних состояний системы, а если состояние никогда не меняется, то можно говорить о полном отсутствии сознания. Другими словами, смена состояний — необходимое условие для наличия сознания в любой системе. Таким образом, имеется принципиальная возможность сопоставить с сознанием вектор состояния в некотором выбранном представлении и описывать его методами квантовой теории. Одновременно при таком подходе сознание становится элементом «энергетического мира», поскольку энергия в квантовой механике является функцией состояния. Соответственно деятельность сознания может быть описана в энергетических терминах и сведена к процессам, изменяющим распределение энергии в системе. Эта энергия не является таковой согласно классическим представлениям, поскольку ее градиент (сила) не может непосредственно совершить, например, работу над плотными телами. Но для тонких уровней реальности — это объективно существующая энергия, градиент которой способен совершить работу в отношении других объектов данного уровня. При этом существенную роль играет наличие нелокальности, квантовой запутанности на тонких уровнях реальности, в результате чего внешние объекты в какой-то своей части становятся едины с нашим энергетическим телом, связаны с ним квантовыми корреляциями. Поэтому сознание имеет принципиальную возможность изменять распределение энергии во внешних объектах как во внешнем «продолжении» своего энергетического тела, к которому сознание имеет прямой доступ. Однако для осознанного управления этим процессом наше сознание должно обладать практическим опытом индивидуальной активности на этих уровнях реальности.

Если посмотреть чуть шире на философские проблемы, которые ставит перед нами современная квантовая теория, то следует отметить, что ее выводы способны нанести сокрушительный удар по мировоззрению людей, ориентированных на ценности материального мира, — людей, составляющих основу так называемого общества потребления. Возможен нешуточный конфликт в умах добропорядочных граждан, озабоченных своим преуспеянием в нашем бренном мире. Постепенно назревает противоречие.

С одной стороны — есть стремление к материальным благам и новым диковинным техническим устройствам, которые обладают невиданными доселе, прямо-таки фантастическими возможностями. И этот прагматизм, интересы потребительского рынка стимулируют все более интенсивные научные исследования в этом направлении.

С другой стороны — создание таких устройств предполагает более глубокий и пристальный взгляд на окружающую реальность, который проникает в запредельные, «потусторонние» для материального мира области, подтверждает его ограниченность и свидетельствует о наличии более широкой «неклассической» реальности. Согласно такому видению, все стремления человека к материальным благам, богатству, власти, карьере и т. п. ничего не стоят, их не возьмешь с собой после смерти физического тела в ту, иную реальность, которая сейчас открывается нашему взору. Более того, чрезмерное внимание человека к мирским ценностям может только усложнить его дальнейший путь и судьбу на квантовых уровнях Реальности.

Суперпозиция состояний

 

Наличие в окружающем нас мире «противоестественных» (с классической точки зрения) состояний, объективность их существования подтверждены физическими экспериментами, и этот факт является прямым следствием одного из самых фундаментальных принципов квантовой механики — принципа суперпозиции состояний. Или лучше сказать наоборот: это неотъемлемое свойство природы нашло свое отражение в основном теоретическом принципе квантовой механики. Сформулировать его можно следующим образом.

Принцип суперпозиции состояний: если система может находиться в различных состояниях, то она способна находиться в состояниях, которые получаются в результате одновременного «наложения» друг на друга двух или более состояний из этого набора.

В квантовой теории есть два качественно различных вида суперпозиции в соответствии с тем, что чистые состояния могут описываться вектором состояния, а смешанные — матрицами плотности. Поэтому и накладываться друг на друга могут либо векторы состояния, либо матрицы плотности. Мы пока будем говорить о суперпозиции чистых состояний, чтобы подчеркнуть это обстоятельство, обычно используют выражения «когерентная суперпозиция», «когерентные состояния».

В классической физике понятие суперпозиции тоже широко используется. Все мы рисовали в школе стрелочки векторов для сил, приложенных к телу, и по правилу параллелограмма (треугольника) находили результирующий вектор силы. Мы пользовались при этом принципом суперпозиции классической физики, суть которого в том, что результирующий эффект от нескольких независимых воздействий представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности. Он справедлив для систем или физических полей, описываемых линейными уравнениями.

Но в классической физике принцип суперпозиции является приближенным, а не универсальным, фундаментальным. Это скорее следствие линейности уравнений движения соответствующих систем и служит достаточно хорошим приближением, когда нелинейные эффекты незначительны.

Иная ситуация — в квантовой механике. В ней принцип суперпозиции является фундаментальным, одним из основных постулатов, определяющих структуру математического аппарата теории. Из него следует, например, что состояния квантовомеханической системы должны изображаться векторами линейного пространства, что операторы физических величин должны быть линейными и т. д.

Но основное отличие не в этом. Давайте вчитаемся еще раз более внимательно в формулировку этого принципа: если система может находиться в различных состояниях, то она может одновременно находиться сразу в двух (и более) состояниях! Например, если в качестве отдельных состояний системы взять пространственные координаты ее центра масс, и наша система способна принимать различные положения в пространстве, то из принципа суперпозиции следует, что она в состоянии находиться одновременно сразу во всех точках пространства — то есть быть полностью «размазанной» во всем пространственно-временном континууме. И это будет вполне естественное состояние с точки зрения квантовой теории! Для практической реализации такого необычного состояния системы нет принципиальных теоретических запретов. Разве это не удивительно? Не противоречит нашим привычным представлениям о реальности? Именно это явное противоречие «здравому смыслу» приводит в отчаяние уже не одно поколение физиков. Положение усугубляется тем, что никаких ограничений в квантовой теории на этот принцип не накладывается — он в равной степени применим и к макроскопическим объектам, и к микрочастицам.

Основное отличие принципа суперпозиции в квантовой теории от его классического аналога в том, что состояния, которые «накладываются» друг на друга в квантовой теории, — это альтернативные, взаимоисключающие состояния, когда одно из них полностью отрицает другое. Если мы находимся где-то в одном месте, значит, в другом месте нас нет — это подсказывает здравый смысл. Но в квантовой теории складываются именно такие взаимоисключающие состояния, и система может находиться в таких состояниях одновременно!

В классической физике, если взять те же силы, они вовсе не противоречат друг другу. Одна может спокойно действовать наряду с другой, и они вполне мирно «уживаются» друг с другом, а при их сложении мы получаем такую же обычную силу, которая не хуже и не лучше других сил. Только если мы сложим две противоположные и одинаковые по модулю силы, их равнодействующая будет равна нулю. Силы тогда взаимно компенсируются, они как бы «уничтожают» друг друга, и на тело вообще никакие силы действовать не будут.

А что получается в квантовой теории? Там все состояния несовместимы друг с другом. Но если мы сложим, например, два таких взаимоисключающих состояния, то уже не сможем сказать, что система при этом «уничтожится». Система при квантовом подходе может «исчезнуть» только в одном случае — если у нее нет вообще никаких состояний, а в случае суперпозиции мы имеем как минимум два. Отсутствие системы как элемента реальности в квантовой теории возможно лишь тогда, когда мы вообще не можем сопоставить с системой никаких состояний. Если такие состояния есть, значит, есть и система. Но вот что она из себя представляет, когда находится в суперпозиции двух взаимоисключающих состояний? Что происходит со спином, когда на состояние «спин-вверх» накладывается состояние «спин-вниз»? Это все равно что человек стоит одновременно «на ногах» и в то же самое время «вверх ногами». Как такое может быть, как это понимать? «Хороший вопрос», который может свести с ума, если подходить к нему с точки зрения наших привычных представлений о реальности.

Хотя и здесь может помочь аналогия с классическими представлениями. Если мы продолжим рассуждать о нашем примере с двумя противоположными силами, то придем к выводу, что ситуация в квантовой теории отдаленно ее напоминает. Итак, мы имеем равнодействующую двух сил, которая равна нулю, — что это означает? Можно сказать, что такой физической величины, как сила, для нашей системы в явном виде практически не существует. Две уравновешивающие силы находятся как бы в скрытом состоянии, они не проявлены, недоступны для восприятия и непосредственного наблюдения за результатами действия каждой из этих сил в отдельности. Лишь когда мы уберем одну из этих сил, то сможем явно убедиться в наличии второй, например, по ускорению, которое приобретет тело под действием оставшейся силы.

Что-то похожее происходит и в квантовой теории. Для простоты мы будем говорить о суперпозиции состояний с равными весами. Когда система пребывает в суперпозиции двух (и более) состояний, то в явном виде они не существуют — система не имеет характерных особенностей ни того, ни другого состояния. Так, если человек может находиться в двух состояниях — «на ногах» и «на голове» — то, когда он пребывает в суперпозиции этих состояний, мы, глядя со стороны, не увидим ни одного из них. На «языке» квантовой теории это означает, что система в этом случае находится в нелокальном состоянии — нет такого локального элемента реальности, который являлся бы «носителем» этих двух состояний. Человека в нашем примере вообще нет в качестве локального объекта, иными словами — «в своем физическом теле», и это вполне логично, поскольку ситуацию, когда мы видим его стоящим одновременно и «на ногах», и «на голове», действительно трудно себе вообразить. Но это не говорит о том, что наша система исчезла, перестала существовать. Так же, как и силы в классическом примере вовсе не исчезают от того, что одна из них уравновешивает другую. Они продолжают существовать, и в их наличии можно убедиться, нарушив равновесие этих сил, то есть каким-то образом воздействовав на систему.

В случае суперпозиции состояний похожая ситуация. Система имеет два различных состояния в качестве потенциально возможных локальных своих проявлений. Это те состояния, которые мы можем явно наблюдать и зафиксировать, но, чтобы их «проявить», нам необходимо с системой каким-то образом «проконтактировать». Здесь есть два принципиально различных варианта: во-первых, произвести прямое измерение системы, то есть осуществить взаимодействие с измерительным прибором (окружением). В этом случае мы просто разрушаем суперпозицию состояний и «проявляем» одно из потенциальных состояний системы в его локальном, привычном для нас материальном облике. Этот физический процесс, как нам уже известно, называется декогеренцией. Второй вариант: «проявлять» то или иное локальное состояние при помощи так называемых унитарных (обратимых) операций. В этом случае сохраняется возможность снова перевести систему в суперпозиционное состояние. В этом заключается принципиальное отличие от первого варианта, где такая возможность утрачивается. Точнее, реализовать ее можно было только в том случае, если бы мы умели управлять состоянием всей объединенной системы, в состав которой вошла наша исходная система при взаимодействии. Такие унитарные операции сейчас применяются для манипулирования кубитами в квантовом компьютинге.

Необычную особенность квантовой суперпозиции — нелокальность и непроявленный потенциальный характер такого состояния, можно пояснить еще следующим образом. В отличие от классической суперпозиции, в квантовом случае мы никогда не получим промежуточное значение между состояниями, участвующими в суперпозиции. Например, классическая суперпозиция двух цветов, черного и белого, дает в результате серый цвет, но квантовая суперпозиция никакой серый цвет дать не в состоянии, никакого цвета вообще не будет — лишь при декогеренции, при взаимодействии (измерении) можно получить один из цветов — либо черный, либо белый.

Столь необычные состояния объектов, которые находятся в нелокальной суперпозиции, будоражат умы физиков уже многие десятилетия. Что будет, если мы совместим несовместимое? Что будет, если «наложим» друг на друга добро и зло, жизнь и смерть? В последнем случае часто вспоминают «кота Шредингера», которого физики приводят в качестве примера, поясняющего всю необычность состояний, существующих в окружающем мире, если не ограничиваться привычными рамками классической реальности. Такие состояния имеют место, когда мы готовы выйти за пределы предметного мира и хотим «заглянуть» в реальность более высокого уровня, более широкую, содержащую весь материальный мир в качестве своей составной части.

При квантовой суперпозиции живого и мертвого кота он не может находиться в некоем промежуточном полуживом (полумертвом) состоянии, как это могло иметь место в классическом варианте. Он именно одновременно и жив, и мертв, находится сразу в двух этих состояниях. Но вся парадоксальность такой ситуации в квантовой теории легко снимается, поскольку в этом случае кота просто нет в качестве локального объекта нашего материального мира. Можно сказать как угодно — что кот находится в потустороннем мире, в информационной сфере, в квантовом домене совокупной реальности и т. п. Но самое главное, что как обычного кота, которого можно погладить, — его просто нет. В своем физическом теле, в привычном облике кота, то есть в качестве локального объекта нашего материального мира он просто не существует. Он находится в состоянии более общего типа, а локальное состояние — только один из частных случаев, один из возможных вариантов бытия нашего кота. Он может проявиться из нелокальной суперпозиции в процессе декогеренции. Лишь тогда мы можем увидеть его, и уже не в каком-то парадоксальном сочетании жизни и смерти, а только в одном из этих состояний. Но такое объяснение квантовой теории, этот вывод, этот результат не всех устраивает. Ведь если система может находиться в таких «противоестественных» состояниях, то придется признать наличие более глубокой и всеобъемлющей реальности. Весь привычный для нас мир материи (вещества и физических полей) оказывается тогда лишь незначительной частью совокупной квантовой реальности. По сути, признание этого факта означает крушение основы мировоззрения большинства из нас. Поэтому многие не готовы принять эти выводы квантовой теории.

Но, может быть, принцип суперпозиции — это выдумка физиков-теоретиков? Возможно, это лишь математические манипуляции, которые не имеют под собой никакой реальной физики? Конечно же, нет, этот принцип не был «взят с потолка», уместно сказать, что он был выстрадан при становлении квантовой механики. Только с помощью этого принципа удавалось объяснить многие физические эксперименты, которые не укладывались в рамки классического описания. Это сама реальность при более пристальном взгляде на нее «подсказывала» тот способ, который позволял адекватно ее описывать, сама природа помогала найти тот теоретический метод, благодаря которому получались правильные количественные значения величин и удавалось точно предсказывать результаты физических экспериментов.

Стоило «копнуть» законы природы чуть глубже, как оказалось, что окружающий нас мир — лишь часть чего-то более емкого, всеобъемлющего. Квантовая теория раздвинула границы реальности, показав, что материальный мир и классические состояния — это далеко не все, что нас окружает. Принцип суперпозиции существенно расширил сферу состояний и оставил на долю классического мира только незначительную часть в пределах совокупной квантовой реальности.

Сама природа подсказала, что когерентные суперпозиционные состояния — вовсе не абстракция, а неотъемлемый элемент окружающей реальности. Собственно говоря, для объяснения физических процессов и явлений они и были введены. Но понадобилось достаточно много времени, прежде чем пришло понимание, почему в одних случаях суперпозиционные состояния имеют место, а в других нет, по каким законам они «живут», какие процессы нелокальную суперпозицию разрушают, а какие восстанавливают. И основная роль в том, что понимание этих процессов стало возможно, опять-таки принадлежит самой природе, поскольку ответы на эти вопросы исследователи стали получать в результате интенсивной практической работы над реальными физическими системами, позволяющими использовать когерентную суперпозицию в качестве рабочего ресурса для квантового компьютера и других технических устройств. Во многом благодаря непосредственной работе с когерентными состояниями, манипуляции ими в физических лабораториях, покров таинственности с нелокальных состояний стал спадать — они начали раскрывать свои поразительные свойства, удивительные особенности и небывалые, по сравнению с классическими состояниями, возможности.

Когерентные состояния очень чувствительны к внешним воздействиям. Они возможны для чистых состояний, то есть для замкнутых (изолированных) систем, либо для псевдочистых состояний (квазизамкнутых систем) в промежутках времени, которые меньше периода декогеренции. Может возникнуть вопрос: что толку в этих состояниях, если когерентная суперпозиция не наблюдаема, если любые попытки измерения (наблюдения) такую суперпозицию разрушают, приводят к декогеренции? Да, суперпозиция не наблюдаема, это нелокальное состояние. Наблюдать в виде локальных форм можно только результат декогеренции этого состояния. И, тем не менее, когерентные состояния научились использовать на практике. Когерентность по отдельным степеням свободы системы можно сохранять на временах, меньших времени декогеренции окружением, ее можно восстанавливать, поддерживать, ею можно манипулировать. При этом, как уже говорилось, когерентность не нарушают унитарные преобразования системы, и их сейчас широко используют для управления когерентными состояниями, например, в квантовом компьютинге.

Такие состояния обладают необычными свойствами. Наличие нелокальных корреляций между подсистемами (кубитами) обеспечивает согласованное их поведение, когда все кубиты ведут себя как единое целое, мгновенно реагируя на любые изменения состояния хотя бы одного из них. Все это оправдывает затраченные усилия, поскольку ресурс квантового компьютера в этом случае возрастает экспоненциально по сравнению с обычным. Квантовый компьютер все вычисления выполняет как бы в «потустороннем мире», за пределами материального мира локальных форм — там, где когерентная суперпозиция не нарушена. А результаты этих вычислений мы уже можем увидеть в привычной дискретной форме, «проявив» его при помощи процесса декогеренции.

Если говорить о теоретическом описании суперпозиционных состояний, о математическом формализме, то представление состояния в виде результата суперпозиции некоторого числа других состояний — это математическая процедура, которая всегда возможна и не имеет отношения к физике. Она аналогична разложению волны на компоненты Фурье. Имеет ли такое разложение физический смысл, будет ли оно полезно, зависит от конкретной задачи, от конкретных физических условий и тех величин, которые нас интересуют.

Вместе с тем, расширение класса состояний, изучение физики когерентных суперпозиционных состояний определяют некоторые специфические особенности в структуре математического аппарата квантовой теории. Как я пытался показать выше, принцип суперпозиции состояний — это что-то вроде операции суммирования. Суперпозиция означает, что состояния можно каким-то образом складывать, получая при этом новые состояния системы. Поэтому состояния необходимо связать с какими-либо математическими объектами, которые допускают сложение, и получаются математические объекты того же типа. Из наиболее простых математических структур, удовлетворяющих этим условиям, нам известны векторы, которые и сопоставляются различным состояниям системы. Такие векторы называются в квантовой теории векторами состояния — к их рассмотрению мы сейчас и перейдем.

Вектор состояния

 

Согласно аксиоматике квантовой механики, состояние — это полное описание замкнутой системы в выбранном базисе, которое формализуется лучом в гильбертовом пространстве ( вектором состояния ).

Что такое гильбертово пространство, понять довольно просто — это пространство состояний системы, некоторое множество ее возможных состояний. Оно задается набором собственных (базисных, основных) состояний системы, которые нас интересуют в каком-то конкретном случае.

При этом в зависимости от поставленной задачи мы можем выбирать тот или иной набор базисных состояний и записывать различные векторы состояния для одной и той же системы. Например, нас может интересовать, как изменяются пространственные координаты частицы, и тогда выбирается бесконечномерное гильбертово пространство, поскольку координата — непрерывная величина, и с каждой точкой сопоставимо отдельное состояние частицы. Но нас может интересовать иная задача — как у той же частицы ведет себя спин. Тогда можно будет записать уже другой вектор состояния, выбирая в качестве базиса, скажем, два состояния спина, которые возможны для нашей частицы: спин-вверх и спин-вниз. И в том, и в другом случае это будут полные описания, поскольку охватываются все возможные координаты или ситуации со спином. Полнота описания в квантовой теории заключается не в том, что одновременно описывается все, что только возможно для данной системы. Речь о том, что мы имеем полное описание в рамках определенного набора состояний, которые нас интересуют.

Записывая вектор состояния системы в различных базисах, мы как бы анализируем систему с различных сторон, рассматриваем разные стороны ее проявления. При этом можно выбирать самые различные наборы состояний, записывая векторы состояний в любом базисе. Другой вопрос, нужно ли это делать? Что толку, если мы выберем набор базисных состояний, но система, которую нам хочется описать, эти состояния не принимает? Тогда вектор состояния, записанный для нашей системы, не будет иметь под собой никакой объективной основы — он не будет описывать выбранный нами элемент реальности. Другое дело, что не так-то просто бывает сказать, какие состояния существуют у данной системы. Например, нелегко догадаться, что у частиц могут быть спиновые степени свободы.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 951; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.05 с.)
Главная | Случайная страница | Обратная связь