Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Функции химических элементов в организме человека
Таблица 4.1 Функция макроэлементов в организме
Таблица 4. 1 (окончание) Функция микроэлементв и ультрамикроэлементов в организме человека
Органические вещества Органические соединения составляют в среднем 20–30% массы клетки живого организма. К ним относятся биологические полимеры – белки, нуклеиновые кислоты и полисахариды, а также жиры и ряд низкомолекулярных органических веществ – аминокислоты, простые сахара, нуклеотиды и т.д. Полимеры – сложные разветвленные или линейные молекулы, при гидролизе распадающиеся до мономеров. Если полимер состоит из одного вида мономеров, то такой полимер называют гомополимером, если в состав полимерной молекулы входят различные мономеры – то это гетерополимер. Если группа различных мономеров в полимерной молекуле повторяется – это регулярный гетерополимер, если нет повторения определенной группы мономеров – гетерополимер нерегулярный. В составе клетки они представлены белками, углеводами, жирами, нуклеиновыми кислотами (ДНК и РНК) и аденозинтрифосфатом (АТФ). Белки
Из органических веществ клетки по количеству и значению на первом месте стоят белки. Белки, или протеины (от греч. протос – первый, главный) – высокомолекулярные гетерополимеры, органические вещества и распадающиеся при гидролизе до аминокислот. В состав простых белков (состоящих только из аминокислот) входят углерод, водород, азот, кислород и сера. Часть белков (сложные белки) образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь – это сложные белки, содержащие помимо аминокислот еще и небелковую — простетическую группу. Она может быть представлена ионами металлов (металлопротеины — гемоглобин), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины). Белки обладают огромной молекулярной массой: Один из белков – глобулин молока – имеет молекулярную массу 42000. Белки представляют собой нерегулярные гетерополимеры, мономерами которых являются α -аминокислоты. В клетках и тканях обнаружено свыше 170 различных аминокислот, но в состав белков входит лишь 20 α -аминокислот. В зависимости от того, могут ли аминокислоты синтезироваться в организме, различают: заменимые аминокислоты – десять аминокислот, синтезируемых в организме и незаменимые аминокислоты – аминокислоты, которые в организме не синтезируются. Незаменимые аминокислоты должны поступать в организм вместе с пищей. В зависимости от аминокислотного состава, белки бывают полноценными, если содержат весь набор незаменимых аминокислот и неполноценными, если какие-то незаменимые аминокислоты в их составе отсутствуют. Общая формула аминокислот приведена на рисунке. Все α -аминокислоты при α -атоме углерода содержат атом водорода, карбоксильную группу (-СООН) и аминогруппу (-NH2). Остальная часть молекулы представлена радикалом. Аминогруппа легко присоединяет ион водорода, т.е. проявляет основные свойства. Карбоксильная группа легко отдает ион водорода – проявляет свойства кислоты. Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах. Это зависит от рН раствора и от того, какая аминокислота: нейтральная, кислая или основная. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу, основные аминокислоты, имеющие в радикале еще одну аминогруппу и кислые аминокислоты, имеющие в радикале еще одну карбоксильную группу. Пептиды – органические вещества, состоящие из небольшого количества остатков аминокислот, соединенных пептидной связью. Образование пептидов происходит в результате реакции конденсации аминокислот (рис. 4.6). При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой, между ними возникает ковалентная азот-углеродная связь, которую называют пептидной. В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов. Если полипептид состоит из большого количества остатков аминокислот, то его уже называют белком. На одном конце молекулы находится свободная аминогруппа (его называют N-концом), а на другом – свободная карбоксильная группа (его называют С-концом). Структура белковой молекулы Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков. Первичная структура белка – последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами – пептидная. Первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в b-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию – транспорт кислорода (в таких случаях у человека развивается заболевание – серповидноклеточная анемия). Первым белком, у которого была выявлена аминокислотная последовательность, стал гормон инсулин. Исследования проводились в Кембриджском университете Ф.Сэнгером с 1944 по 1954 год. Было выявлено, что молекула инсулина состоит из двух полипептидных цепей (21 и 30 аминокислотных остатков), удерживаемых около друг друга дисульфидными мостиками. За свой кропотливый труд Ф.Сэнгер был удостоен Нобелевской премии. Рис. 4.6. Первичное строение молекулы белка Вторичная структура – упорядоченное свертывание полипептидной цепи в α -спираль (имеет вид растянутой пружины) и β -структра (складчатый слой). В α -спирали NH-группа данного остатка аминокислоты взаимодействует с СО-группой четвертого от нее остатка. Практически все «СО-» и «NН-группы» принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия). Третичная структура — укладка полипептидных цепей в глобулы, возникающей в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны. По форме молекулы различают белки глобулярные и фибриллярные. Если фибриллярные белки выполняют в основном опорные функции, то глобулярные белки растворимы и выполняют множество функций в цитоплазме клеток или во внутренней среде организма. Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле исключительно при помощи нековалентных связей, в первую очередь водородных и гидрофобных. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин. Он образован двумя a-субъединицами (141 аминокислотный остаток) и двумя b-субъединицами (146 аминокислотных остатков).С каждой субъединицей связана молекула гема, содержащая железо. Многие белки с четвертичной структурой занимают промежуточное положение между молекулами и клеточными органеллами – например микротрубочки цитоскелета состоят из белка тубулина, состоящего из двух субъединиц. Трубочка удлиняется в результате присоединения димеров к торцу. Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции
Рис. 4.7. Структуры молекул белка Свойства белков
Рис. 4.8. Денатурация и ренатурация белка Функции белков Белки выполняют в клетке разнообразные функции. Функциональной активностью обладают белки с третичной структурной организацией, но в большинстве случаев только переход белков третичной организации в четвертичную структуру обеспечивает специфическую функцию. Ферментативная функция Все биологические реакции в клетке протекают при участии особых биологических катализаторов — ферментов, а любой фермент — белок, ферменты локализованы во всех органеллах клеток и не только направляют ход различных реакций, но и ускоряют их в десятки и сотни тысяч раз. Каждый из ферментов строго специфичен. Так, распад крахмала и превращение его в сахар (глюкозу) вызывает фермент амилаза, тростниковый сахар расщепляет только фермент инвертаза и т.д. Многие ферменты давно уже применяют в медицинской, а также в пищевой (хлебопечение, пивоварение и др.) промышленности. Ферменты специфичны – могут катализировать один тип реакций – в активный центр попадает определенная молекула субстрата. Поскольку почти все ферменты являются белками (есть рибозимы, РНК, катализирующие некоторые реакции), их активность наиболее высока при физиологически нормальных условиях: большинство ферментов наиболее активно работает только при определенной температуре, рН, скорость зависит от концентрации фермента и субстрата. При повышении температуры до некоторого значения (в среднем до 50°С) каталитическая активность растет (на каждые 10°С скорость реакции повышается примерно в 2 раза). Структурная функция Белки входят в состав всех мембран, окружающих и пронизывающих клетку, и органелл. В соединении с ДНК белок составляет тело хромосом, а в соединении с РНК — тело рибосом. Растворы низкомолекулярных белков входят в состав жидких фракций клеток. Регуляторная функция Некоторые белки являются гормонами - биологически активными веществами, выделяющиеся в кровь различными железами, которые принимают участие в регуляции процессов обмена веществ. Гормоны инсулин и глюкагон регулирует уровень углеводов в крови. Транспортная функция Именно с белками связан перенос кислорода, а также гормонов в теле животных и человека (его осуществляет белок крови гемоглобин). Двигательная функция Все виды двигательных реакций клетки выполняются особыми сократительными белками актином и миозином, которые обусловливают сокращение мускулатуры, движение жгутиков и ресничек у простейших, перемещение хромосом при делении клетки, движение растений. Защитная функция Многие белки образуют защитный покров, предохраняющий организм от вредных воздействий, например роговые образования — волосы, ногти, копыта, рога. Это механическая защита. В ответ на внедрение в организм чужеродных белков (антигенов) в клетках крови вырабатываются вещества белковой природы (антитела), которые обезвреживают их, предохраняя организм от повреждающего действия. Это иммунологическая защита. Энергетическая функция Белки могут служить источником энергии. Расщепляясь до конечных продуктов распада — диоксида углерода, воды и азотсодержащих веществ, они выделяют энергию, необходимую для многих жизненных процессов в клетке 17, 6 Кдж. Рецепторная функция Белки-рецепторы – встроенные в мембрану молекулы белков, способных изменять свою структуру в ответ на присоединение определенного химического вещества. Запасающая функция Эту функцию выполняют так называемые резервные белки, являющиеся источниками питания для плода, например белки яйца (овальбумины). Основной белок молока (казеин) также выполняет главным образом питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма. Токсическая функция Токсины, токсичные вещества природного происхождения. Обычно к токсинам относят высокомолекулярные соединения (белки, полипептиды и др.), при попадании которых в организм происходит выработка антител. По мишени действия токсины разделяют на следующие группы: -гематические яды — яды, затрагивающие кровь. -нейротоксины — яды, поражающие нервную систему и мозг. -миоксичные яды — яды, повреждающие мышцы. -гемотоксины — токсины, которые повреждают кровеносные сосуды и вызывают кровотечение. -гемолитические токсины — токсины, которые повреждают эритроциты. -нефротоксины — токсины, которые повреждают почки. -кардиотоксины — токсины, которые повреждают сердце. -некротоксины — токсины, которые разрушают ткани, вызывая их омертвление (некроз). Ядовитые вещества фаллотоксины и аматоксины содержатся в различных видах: бледной поганке, мухоморе вонючем, весеннем.
Углеводы Углеводы, или сахариды, — органические вещества, в состав которых входит углерод, кислород, водород. Углеводы составляют около 1% массы сухого вещества в животных клетках, а в клетках печени и мышц — до 5%. Наиболее богаты углеводами растительные клетки (до 90% сухой массы). Химический состав углеводов характеризуется их общей формулой Сm(Н2О)n, где m≥ n. Количество атомов водорода в молекулах углеводов, как правило, в два раза больше атомов кислорода (то есть как в молекуле воды). Отсюда и название — углеводы. В растительных клетках их значительно больше, чем в животных. Углеводы содержат только углерод, водород и кислород. К простейшим углеводам относятся простые сахара (моносахариды). Они содержат пять (пентозы) или шесть (гексозы) атомов углерода и столько же молекул воды. Примерами моносахаридов могут служить глюкоза и фруктоза, находящиеся во многих плодах растений. Кроме растений глюкоза входит также в состав крови. Сложные углеводы состоят из нескольких молекул простых углеводов. Из двух моносахаридов образуется дисахарид. Пищевой сахар (сахароза), например, состоит из молекулы глюкозы и молекулы фруктозы. Значительно большее число молекул простых углеводов входит в такие сложные углеводы, как крахмал, гликоген, клетчатка (целлюлоза). В молекуле клетчатки, например, от 300 до 3000 молекул глюкозы. Функции углеводов Энергетическаяфункция одна из основных функций углеводов. Углеводы (глюкоза) – основные источники энергии в животном организме. Обеспечивают до 67% суточного энергопотребления (не менее 50%). При расщеплении 1 г углевода выделяется 17, 6 кДж, вода и углекислый газ. Запасающаяфункция выражается в накоплении крахмала клетками растений и гликогена клетками животных, которые играют роль источников глюкозы, легко высвобождая ее по мере необходимости. Опорно-строительнаяфункция Углеводы входят в состав клеточных мембран и клеточных стенок (целлюлоза входит в состав клеточной стенки растений, из хитина образован панцирь членистоногих, муреин образует клеточную стенку бактерий). Соединяясь с липидами и белками, образуют гликолипиды и гликопротеины. Рибоза и дезоксирибоза входят в состав мономеров нуклеотидов. Рецепторнаяфункция Олигосахаридные фрагменты гликопротеинов и гликолипидов клеточных стенок выполняют рецепторную функцию, воспринимая сигналы, поступающие из внешней среды. Защитная функция Слизи, выделяемые различными железами, богаты углеводами и их производными (например, гликопротеинами). Они предохраняют пищевод, кишечник, желудок, бронхи от механических повреждений, препятствуют проникновению в организм бактерий и вирусов. Липиды
Липиды – сборная группа органических соединений, не имеющих единой химической характеристики. Их объединяет то, что все они нерастворимы в воде, но хорошо растворимы в органических растворителях (эфире, хлороформе, бензине). Липиды содержатся во всех клетках животных и растений. Содержание липидов в клетках составляет до 5%, но в жировой ткани может иногда достигать 90%. Различают простые и сложные липиды. Простые липиды, представляют собой двухкомпонентные вещества, являющиеся сложными эфирами высших жирных кислот и какого-либо спирта, чаще – глицерина. Сложные липиды состоят имеют многокомпонентные молекулы. Из простых липидов рассмотрим жиры и воска. Жиры широко распространены в природе. Жиры – это сложные эфиры высших жирных кислот и трехатомного спирта – глицерина. В химии эту группу органических соединений принято называть триглицеридами, так как все три гидроксильные группы глицерина связаны с жирными кислотами. В составе триглицеридов обнаружено более 500 жирных кислот, молекулы которых имеют сходное строение. Как и аминокислоты, жирные кислоты имеют одинаковую для всех кислот группировку – гидрофильную карбоксильную группу (–СООН) и гидрофобный радикал, которым они отличаются друг от друга. Поэтому общая формула жирных кислот имеет вид R-CООН. Радикал представляет собой углеводородный хвост, отличающийся у разных жирных кислот количеством группировок –СН2. Большая часть жирных кислот содержит в " хвосте" четное число атомов углерода, от 14 до 22 (чаще всего 16 или 18). Кроме того, углеводородный хвост может содержать различное количество двойных связей. По наличию или отсутствию двойных связей в углеводородном хвосте различают насыщенные жирные кислоты, не содержащие в углеводородном хвосте двойных связей и ненасыщенные жирные кислоты, имеющие двойные связи между атомами углерода (-СН=СН-). Если в триглицеридах преобладают насыщенные жирные кислоты, то они твердые при комнатной температуре (жиры), если ненасыщенные – жидкие (масла). Плотность жиров ниже, чем у воды, поэтому в воде они всплывают и находятся на поверхности. Воска – группа простых липидов, представляющих собой сложные эфиры высших жирных кислот и высших высокомолекулярных спиртов. Встречаются как в животном, так и в растительном царстве, где выполняют главным образом защитные функции. У растений они, например, покрывают тонким слоем листья, стебли и плоды, предохраняя их от смачивания водой и проникновения микроорганизмов. От качества воскового покрытия зависят сроки хранения фруктов. Под покровом пчелиного воска хранится мед и развиваются личинки. К сложным липидам относятся фосфолипиды, гликолипиды, липопротеины, стероиды, стероидные гормоны, витамины А, D, E, K. Фосфолипиды – сложные эфиры многоатомных спиртов с высшими жирными кислотами, содержащие остаток фосфорной кислоты. Иногда с ней могут быть связаны добавочные группировки (азотистые основания, аминокислоты). Как правило, в молекуле фосфолипидов имеется два остатка высших жирных и один остаток фосфорной кислоты. Фосфолипиды присутствуют во всех клетках живых существ, участвуя главным образом в формировании фосфолипидного бислоя клеточных мембран – остатки фосфорной кислоты гидрофильны и всегда направлены к внешней и внутренней поверхности мембраны, а гидрофобные хвосты направлены друг к другу внутри мембраны. Гликолипиды – это углеводные производные липидов. В состав их молекул наряду с многоатомным спиртом и высшими жирными кислотами входят также углеводы. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности. Липопротеины – липидные молекулы, связанные с белками. Их очень много в мембранах, белки могут пронизывать мембрану насквозь, находится под- или над мембраной, могут быт погружены в липидный бислой на различную глубину. Липоиды – жироподобные вещества. К ним относятся стероиды (широко распространенный в животных тканях холестерин и его производные – гормоны коры надпочечников – минералокортикоиды, глюкокортикоиды, эстрадиол и тестостерон – соответственно женский и мужской половые гормоны). К липоидам относятся терпены (эфирные масла, от которых зависит запах растений), гиббереллины (ростовые вещества растений), некоторые пигменты (хлорофилл, билирубин), жирорастворимые витамины (А, D, E, K ). Функции липидов показаны в таблице 4.1. Таблица 4.2. Функции жиров
Рис. 9. Химическое строение липидов и углеводов
Аденозинтрифосфат (АТФ)
Входит в состав любой клетки, где он выполняет одну из важнейших функций — накопителя энергии. Молекулы АТФ состоят из азотистого основания аденина, углевода рибозы и трех молекул фосфорной кислоты. Неустойчивые химические связи, которыми соединены молекулы фосфорной кислоты в АТФ, очень богаты энергией (макроэргические связи): при разрыве этих связей энергия высвобождается и используется в живой клетке для обеспечения процессов жизнедеятельности и синтеза органических веществ.
Рис. 4.10. Строение молекулы АТФ 4.4. Практическое задание Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 9877; Нарушение авторского права страницы