Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Строение ДНК. Свойства и функции
Пространственная модель ДНК
Рис. 5. Азотистые основания, входящие в состав нуклеиновых кислот
Американский биохимик Эрвин Чаргафф разработал точные методы определения количества азотистых оснований и установил характерные особенности химического состава нуклеиновых кислот. Это сыграло большую роль в познании молекулярной структуры ДНК. Им было установлено, что азотистые основания, входящие в состав ДНК (рис. 5.5) и выделенные из клеток различных организмов (рис. 5.8) подчиняются закономерностям. Сумма пуриновых оснований (А + Г) всегда равна сумме пиримидиновых (Ц + Т). Содержание аденина равно содержанию тимина, а содержание гуанина — количеству цитозина A=Т; Г=Ц (рис. 5.6). Данные правила предложил ученый Эрвин Чаргафф (рис. 5.7).
Рис. 5.6. Правило Чаргаффа
Рис. 5.7. Эрвин Чаргафф (1905-2002)
Рис. 5.8. Азотистые основания, выделенные из клеток различных организмов
В 1953 г. американский молекулярный биолог Джеймс Уотсон и английский физик и генетик Френсис Крик (рис. 5.9), основываясь на данных Э. Чаргаффа и М. Уилкинса, а также Розалинда Франклин (рис. 5.10) построили модель пространственной структуры молекулы ДНК. Это открытие было удостоено высшей научной награды — Нобелевской премии.
Рис. 5.9. Джеймс Уотсон и Френсис Крик (1953) Рис. 5.10. Розалинда Франклин (1920-1958), английский биофизик и учёный-рентгенограф
В соответствии с моделью Дж. Уотсона и Ф. Крика молекула ДНК состоит из двух длинных комплементарных полинуклеотидных цепей, закрученных в правильную двойную спираль. Диаметр двойной правозакрученной спирали ДНК составляет около 2 нм, один поворот спирали (шаг) – 3, 4 нм. В каждом витке (шаге) спирали находится 10 пар нуклеотидов, расстояние между нуклеотидами равно 0, 34 нм (рис. 5.11).
Рис. 5.11. Третичная структура ДНК
Скелетная основа полинуклеотидных цепей содержит правильно чередующиеся сахара и фосфаты, связанные ковалентными связями. Две углеводно-фосфатные цепи расположены на внешней стороне молекулы ДНК, в то время как азотистые основания находятся внутри ее, перпендикулярно оси спирали. Аденин одной цепи соединяется двумя водородными связями с тимином другой цепи. Между гуанином и цитозином образуются три водородные связи. Такое соединение азотистых оснований обеспечивает прочную связь двух цепей и сохранение равного расстояния между ними на всем протяжении и называется комплементарностью (рис. 5.14). Комплементарность – это пространственная взаимодополняемость молекул или их частей, приводящая к образованию водородных связей. Комплементарность каждой отдельной пары оснований создаёт комплементарность двух полинуклеотидных цепей в целом. Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи в результате избирательного спаривания оснований. Соединение одного из пуринов ( А или Г ) или пиримидинов ( Ц или Т ) с остатком сахара образует нуклеозид. После присоединения к нуклеозиду фосфатной группы возникает нуклеотид, содержащий основание, сахар и фосфатную группу. Фосфатная группа присоединяется к нуклеозиду, заменяя в дезоксирибозе группу ОН– в положении 5′ (рис. 5.12).
Рис. 5.12. Образование дезоксирибонуклеотида путём соединения фосфата, дезоксирибозы и азотистого основания
Нуклеотиды – это мономеры, из которых строится полинуклеотидная цепь. Соединение друг с другом двух нуклеотидов дает динуклеотиды, трех – тринуклеотиды, затем – тетрануклеотиды, и так вплоть до цепи из сотен тысяч нуклеотидов в виде длинных линейных, неразветвленных полинуклеотидов. Полинуклеотидные молекулы РНК имеют молекулярную массу 1, 5-2, 0 млн. и состоят из 4-6 тыс. нуклеотидов. Полинуклеотиды ДНК – это обычно гигантские, органические молекулы, имеющие тысячи, миллионы и даже миллиарды нуклеотидов. Последовательность нуклеотидов в цепи молекулы является первичной структурой молекулы ДНК (рис. 5.13).
Рис. 5.13. Первичная структура ДНК. Схема соединения нуклеотидов в полинуклеотидную цепь В молекулах ДНК две полинуклеотидные цепи имеют противоположное направление в отношении связей 5'–3' и 3'–5', т.е. они антипараллельны (рис. 5.14). Таким образом, в структурной организации молекулы ДНК выделяют три уровня: – третичную структуру – трехмерную спираль с определёнными пространственными характеристиками (рис. 5.11).
Рис. 5.14. Вторичная структура ДНК
Водородные связи между парами комплементарных нуклеотидов (две для пары А-Т и три для пары Г-Ц) относительно непрочные. Поэтому комплементарные нити молекулы ДНК могут разделяться и соединяться вновь при изменении некоторых условий (например, изменении температуры или концентрации солей). Разделение двухцепочечной ДНК называется денатурацией, а обратный процесс - образование двухцепочечной структуры ДНК – гибридизацией. Цепь, содержащая информацию о строении белка (в направлении 5'-3'), называется смысловой цепью, а комплементарная - антисмысловой. Антисмысловая цепь имеет большое значение при стабилизации структуры двойной спирали ДНК и участвует в процессах репликации и репарации (восстановления) поврежденных участков ДНК. Молекулы ДНК являются гигантскими полимерами. Единицами измерения длины молекулы приняты: пары нуклеотидов (п.н.). У человека гаплоидный набор содержит 3, 2х109 пар нуклеотидов. Почти вся ДНК клетки содержится в ядре в виде 46 плотно упакованных, суперскрученных за счет взаимодействий с ядерными белками, структурах - хромосомах. Сравнительно небольшая часть ДНК (около 5%) локализована в митохондриях.
Репликация ДНК
При размножении зигота, образовавшаяся в результате слияния гамет, дает начало миллионам и миллиардам клеток тела. Каждая исходная молекула ДНК дает начало двум новым молекулам РНК, с сохранением в неизменном виде всех особенностей исходной молекулы. Процесс удвоения ДНК, происходящий между процессами деления во время синтетической стадии интерфазы, носит название репликации. Во время репликации информация, закодированная в последовательности нуклеиновых оснований молекулы родительской ДНК, передается с максимальной точностью дочерним ДНК. В 1956 г. А. Корнберг выделил фермент, который был способен связывать свободные нуклеотиды друг с другом, и дал ему название ДНК-полимераза. Способ репликации, характерный для всех эукариот, в том числе и человека, известен под названием полуконсервативной репликации (рис. 5.15). В начале процесса репликации особый фермент — хеликаза расплетает родительскую ДНК на две нити, каждая из которых служит матрицей, определяющей последовательность новой, комплементарной цепи ДНК. При полуконсервативной репликации дочерние клетки первого поколения получают только одну из нитей ДНК родительской клетки. Вторая нить синтезируется заново, при этом она комплементарна родительской цепи. Таким образом, только две из четырех дочерних клеток второго поколения содержат по одной цепи исходной родительской ДНК. Поскольку ДНК-полимераза катализирует репликацию только в одном направлении (5'®3'), непрерывно достраивается только одна новая цепь молекулы ДНК (смысловая). Вторая цепь (антисмысловая) синтезируется другой ДНК-полимеразой, движущейся в обратном направлении, в виде коротких участков ДНК (фрагменты Оказаки). Затем эти фрагменты ДНК связываются в единую цепь ферментом ДНК-лигазой. Таким образом, репликация ДНК обеспечивает высочайшую точность воспроизведения генетической информации, заключенной в последовательности оснований ДНК и тем самым реализует основные функции ДНК - сохранение генетической информации и точное ее воспроизведение в ряду поколений.
Рис. 5.15. Полуконсервативный механизм репликации ДНК Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 4033; Нарушение авторского права страницы