Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Подход к научению как процесс
Повышенное внимание к анализу научения как процесса происходит из обыденной задачи научить, передать опыт. Эта процессуальная сторона научения подчеркивается в его определениях как в биологии [Хайнд, 1975], так и в психологии [Александров, Максимова, 1997]. Она же является основой нейробиологического понимания пластичности нейроНальной активности в качестве механизма научения [Котляр, 1989]. В экспериментальной психологии и биологии был разработан ряд модельных ситуаций, воспроизводящих основные типы ситуаций реального научения. Эти экспериментальные модели научения перечислены и подробно рассмотрены в руководствах по экспериментальной психологии [Эксперим. психол., 1963; Эксперим. психол., 1973 и др.] и обзорах по биологии обучения [Хайнд, 1975; Gould, 1986 и др.]. Среди них можно выделить ряд наиболее общих типов моделей: классическое обусловливание, оперантное обусловливание, выработка дифференцировок, обучение в лабиринтах, разрешение проблемной ситуации, а также специфически человеческие формы вербального научения, научения путем инструктирования и научения по примеру. Исследование процессуальной стороны научения в психологии наиболее ярко проявилось в построении кривых обучения решению разных типов задач. Как правило, это зависимости эффективности решения задачи (оцениваемой через объем воспроизводимого по памяти материала либо через количество правильных ответов или, наоборот, количество ошибок) от количества повторений экспериментальной ситуации. Подобный анализ позволил выявить фазы, во время которых протекает научение, и описать динамику научения с помощью математических уравнений [Эксперим. психол., 1963]. В ряде случаев на кривых обучения наблюдались участки плато, т. е. периоды, когда улучшения поведения по формальным показателям не происходило. Наличие подобных участков позволило высказать предположения об изменении стратегий научения в ходе этого процесса. Для всех тех форм научения, которые исследовались с помощью построения кривых обучения, характерно плавное улучшение выполнения задачи. В то же время в некоторых моделях обучения, в основе которых лежит создание проблемной ситуации (например, научение в проблемной клетке [Эксперим. психол., 1973]), было обнаружено явление резкого, скачкообразного изменения хода кривой научения, соответствовавшего нахождению решения задачи с последующим успешным повторением найденного решения. Это явление получило название инсайта, или озарения. Инсайт наблюдается в более сложных формах научения по сравнению с условными рефлексами и дифференцировками. Решение задач, требующих подобных форм научения, происходит путем проб и ошибок. Предполагается, что инсайт возникает тогда, когда организм способен прогнозировать результат пробы [Эксперим. психол., 1963], в противном случае научение протекает плавно. Исследование научения как процесса, таким образом, позволило выявить два принципиально разных типа научения: плавное научение и скачкообразное научение (инсайт и импринтинг). Эта разница может быть связана с разной реорганизацией опыта в этих ситуациях, однако ответить на вопрос, какой именно, можно лишь выяснив, какие именно элементы опыта участвуют и формируются при данных типах научения.
Представление о Нейрофизиологических механизмах Научения
С появлением методов регистрации активности мозга и особенно активности нервных клеток проблема научения стала интенсивно исследоваться в нейробиоло-гии. В силу того, что эти экспериментальные исследования проводились на животных, и из-за трудностей регистрации нейрональной активности в свободном поведении, основное внимание нейрофизиологов было сосредоточено на исследовании самых простых форм обучения, таких как привыкание, выработка рефлексов и дифференцировок. Находясь под сильным теоретическим влиянием бихевиоризма, нейрофизиологи ограничивались изучением форм нейрональной пластичности как основы формирования связей при подобных формах научения. В рамках данного направления много сил было потрачено на поиск места локализации следа памяти (или энграммы), который, как предполагалось, фиксирует образовавшуюся при научении временную связь. Однако анализ динамики активности отдельных нейронов в ряду сочетаний стимуляции и подкрепления показал, что изменения импульсации нейронов происходят практически одновременно во многих отделах мозга, причем изменения в специфических анализаторных и моторных областях могут наблюдаться позже, чем в ассоциативных, таких, например, как гиппокамп [Рабинович, 1975; Thompson, 1976]. Таким образом, было показано, что в научении задействованы многие структуры мозга, а не только специфические сенсорные, моторные и связывающие их ассоциативные структуры, как следовало из классических представлений о замыкании временных связей. Это вовлечение в процесс обучения многих структур привело к формированию представления об обучающихся нервных сетях (см., напр., [Eccles, 1977]). В связи со спецификой нервной ткани, выражающейся в наличии у нервных клеток очень длинных отростков, способных проводить электрические импульсы, и с представлением о потоках информации внутри мозга, ключевым механизмом пластичности нейронов, по мнению авторов, является изменение эффективности синаптической передачи, т. е. изменения этих информационных потоков. Именно поэтому на субклеточном уровне большинство исследований механизмов научения заключалось в изучении закономерностей функционирования синапсов. Этот подход привел к обнаружению долговременной посттетанической потенциации. Такая форма изменения функционирования клеточных контактов рассматривается авторами как соответствующая сформулированным Д. О. Хеббом [Hebb, 1949] принципам синаптической пластичности, способной обеспечить длительное сохранение результатов научения. В силу особенностей уже упоминавшейся бихевиористской позиции нейрофизиологи исследовали научение как процесс дифференцировки и запоминания значимых стимулов среды. Для теоретического описания этого процесса были предложены разнообразные инструктивные теории, описывавшие фиксацию нервной системой навязываемых средой закономерностей. Чисто инструктивные представления о научении, для которых характерно признание полной зависимости научения от закономерностей внешней среды, встречаются довольно редко. В основном на подобных позициях стоят исследователи, пытающиеся смоделировать работу нейронных сетей [Spinelly, 1970]. Их модели в соответствии с разными сочетаниями стимулов («условных» и «безусловных») демонстрируют определенную динамику состояний, которая и понимается как механизм обучения в нейронной сети. Однако, как было отмечено еще на заре исследований научения, в зависимости от мотивации, степени готовности и прошлого опыта научение может происходить по-разному [Эксперим. психол., 1963]. Большой популярностью среди нейрофизиологов пользуются инструктивно-селекционные теории. В соответствии с одной из таких теорий, предложенной Экклсом [Popper, Eccles, 1977], обучение происходит в нейрональной сети за счет изменения эффективности отдельных синалтических контактов, выбор которых производится за счет инструктирующего возбуждения других синапсов. Эта теория учитывает влияние мотивации и состояния готовности, описывая их как модулирующее возбуждение определенных входов нейрона. Однако инструктивным теориям присущ ряд недостатков, не позволяющих использовать их для описания сложных форм научения (см. гл. 14).
Специфика психофизиологического Рассмотрения научения
Психофизиология, в отличие от нейрофизиологии, принимает в расчет субъективное содержание объективных процессов и, более того, изучает, как субъективное соотносится с процессами жизнедеятельности. В соответствии с решением психофизиологической проблемы в рамках системной психофизиологии (см. гл. 14), психическое связано с протеканием системных процессов организации активности мозга в поведении [Швырков, 1978]. С этих позиций отнюдь не все исследования научения в нейрофизиологии можно назвать психофизиологическими, а лишь те, которые проводятся на бодрствующем животном и исследуют изменения нейрональной активности в связи с изменением поведения. В соответствии с этим подходом, собственно психофизиологическими теориями научения можно считать лишь те теории, которые рассматривают формы и динамику организации мозговой активности в процессе научения. Как правило, такие теории оперируют понятиями нейронных сетей или ансамблей, понимая последние как набор совместно активирующихся клеток [Dudai et al., 1987]. Как отмечается ведущими учеными в этой области, «понимание функционирования таких ансамблей может потребовать дополнительных теоретических и экспериментальных приемов по сравнению с теми, которые требуются для изучения более простых типов нервной организации» [Dudai et al., 1987, p. 399]. Таким образом, научение с позиций психофизиологии может быть определено как формирование пространственно-временной организации активности мозга, обеспечивающей выполнение приобретаемого в процессе обучения нового поведения и соответствующей новому состоянию субъекта поведения. При таком определении становится очевидным отличие психофизиологического подхода к научению от подходов, характерных для психологии и биологии. Психофизиологическая теория научения должна описывать взаимодействие организма и среды в процессе научения и отражение этого взаимодействия и его результатов в изменениях организации мозговой активности. В соответствии с различными представлениями о движущих силах научения, все психофизиологические теории могут быть разделены на три типа: инструктивные, инструктивно-селективные и селективные. В отличие от упомянутых ранее инструктивных теорий, предполагающих изменение функций нейрона за счет изменения состояния синаптических контактов, селективные теории научения исходят из существования заложенного в процессе созревания разнообразия нейронных интеграции и выбора необходимой интеграции в результате проб во время обучения. Появление этих теорий, получивших распространение сравнительно недавно [Changeux et al., 1984; Edelman, 1989], связано как с, обнаружением врожденных предрасположенностей к овладению определенным опытом, так и со стремлением подойти к научению с общебиологических позиций (как к эволюционному процессу). Подобный подход проявляется в широком использовании знаний об организации работы иммунной системы в качестве аналогии для рассмотрения процессов формирования нейронных систем, которые обеспечивают реализацию приобретаемого в обучении поведения [Edelman, 1989] (см. также гл. 14). В силу ряда обстоятельств (таких, как доминирование рефлекторных представлений о работе мозга, технические сложности длительной регистрации нейрональной активности у свободно подвижных животных и др.), основной экспериментальный материал для построения психофизиологической теории научения был получен в экспериментах, в которых научение не было непосредственным предметом изучения. Так, на основе исследования способности животных к экстраполяции Л. В. Крушинский предположил наличие резерва нейронов, обеспечивающих фиксацию нового опыта [Крушинский, 1977]. В экспериментах, исследовавших нейрональные основы зрительного восприятия, было обнаружено существование нейронов, специфически активировавшихся при предъявлении конкретных лиц или определенных черт лица. Дополнительный анализ, проведенный авторами, позволил утверждать, что эти клетки отвечают представлению о гностических нейронах [Perrett et al., 1982]. Этот термин был гипотетически введен Ю. Конорски в его теории инструментального обучения для обозначения клеток, отвечающих «отдельным восприятиям» [Конорски, 1970] и фиксирующих элементы опыта. Нейроны, специфически активировавшиеся при предъявлении конкретных слов, были обнаружены в экспериментах на человеке [Heit et al., 1988]. В других экспериментах, направленных на изучение нейронных механизмов поведения, были обнаружены нейроны, специфически активировавшиеся при осуществлении отдельных поведенческих актов [Ranck, 1975] или нахождении животного в определенном месте экспериментальной клетки [O'Keefe, 1979]. Последние были названы нейронами «места», и на основе регистрации активности таких клеток у крыс при обследовании новой территории было показано, что они рекрутируются из нейронов, «молчавших» до помещения животного в новую ситуацию [Wilson, McNaughton, 1993]. Утверждение о специализации «молчащих» нейронов в процессе формирования инструментального пищедобывательного поведения кроликов было также высказано на основе сравнения наборов поведенческих специализаций нейронов до и после формирования новых поведенческих актов [Горкин, 1987]. В этой работе, на основе сравнения среднего количества активных нейронов при одном прохождении микроэлектрода через всю толщу лимбической коры кролика во время выполнения пищедобывательного поведения до и после доучивания, было показано увеличение количества активных нейронов после обучения. Эти результаты подтвердили высказанное Л. В. Крушинским и позднее В. Б. Швырковым [Shvyrkov, 1986] предположение о наличии резерва клеток, обеспечивающего усвоение нового опыта, и явились свидетельством в пользу селективных теорий научения.
Популярное:
|
Последнее изменение этой страницы: 2016-03-26; Просмотров: 788; Нарушение авторского права страницы