Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Проведение возбуждения по нервным волокнам.
Согласно «кабельной» теории, предложенной в 1950 г. А. Германном и затем экспериментально подтвержденной А. Ходжкиным, возбуждение проводится непрерывно по безмиелиновым и прерывисто (сальтаторно, скачкообразно) по миелиновым волокнам. В 1952 г. Д. Лилли нанизал на железную проволоку стеклянные бусы (эквивалент миелина), оставив между ними промежутки. Сравнивая время прохождения тока по оголенному проводнику и по унизанному бусами, он установил, что в последнем случае скорость проведения намного выше, чем в первом. Безмиелиновые волокна на всем протяжении имеют одинаковую электропроводность и сопротивление. Вследствие деполяризации участка мембраны возникающий в нем локальный (местный) ток распространяется только на рядом расположенный невозбужденный. Волна деполяризации идет последовательно, не имея возможности миновать ни один из невозбужденных участков волокна. Миелиновые волокна имеют изолирующий слой, резко уменьшающий емкость мембраны нервного волокна и практически полностью предотвращающий утечку тока из него. Перехваты узла лишенные миелина, в отличие от миелиновых участков, имеют очень низкое сопротивление и поэтому являются центрами электрической активности. Практически все натриевые каналы сосредоточены в области перехватов — до нескольких тысяч на 1 мкм2, тогда как в миелиновых участках их вообще нет. Невозбужденный участок волокна в области перехвата электроположителен по отношению к аксоплазме, а возбужденный — электроотрицателен. Вследствие этого на поверхности волокна возникает продольная разность потенциалов. Так как волокно находится в токопроводящей среде, генерируемый в одном перехвате потенциал действия путем пассивного проведения «перескакивает» через миелинизированный участок к соседнему невозбужденному перехвату. В результате этого в нем появляется регенераторный потенциал действия, т.е. процесс деполяризации быстро распространяется. Согласно определению Н. Бернштейна, «деполяризация — это пробоина в мембране, которая передвигается». Так происходит до тех пор, пока импульс не дойдет до конца аксона. Вместе с тем следует учитывать, что определения «высокая» и «низкая» скорость проведения имеют относительный характер и используются только в сравнительном плане. На самом деле даже в тонких безмиелиновых волокнах скорость проведения очень высока — от 2 до 15 м/с. Итак, миелиновые волокна имеют очевидные преимущества : · энергетически они более экономичны: на «выкачивание» Na+ до исходного градиента 10: 1 тратится значительно меньше энергии, чем для реполяризации безмиелинового волокна; · быстро, точно и дифференцированно проводят различные виды чувствительности, обеспечивая максимально быстрые, адекватные реакции. В процессе эволюции высших организмов скачок в развитии нервной системы был, по-видимому, связан с началом миелинизации нервных волокон. В онтогенезе, особенно у человека, отмечена корреляция между ми-елинизацией некоторых проводящих путей и усложнением рефлекторного и целостного приспособительного поведения.
#7. Механизмы проведения возбуждения в синапсах. Особенности функционирования возбуждающих и тормозящих синапсов. Свойства синапсов. Синапс — специализированный контакт между нервными клетками или нервными клетками и другими возбудимыми образованиями, обеспечивающий передачу возбуждения с сохранением его информационной значимости. С помощью синапсов осуществляется взаимодействие разнородных по функциям тканей организма, например нервной и мышечной, нервной и секреторной. Структура синапса. Пресинаптическое окончание аксона нейронапри подходе к иннервируемой клетке теряет миелиновую оболочку, что несколько снижает скорость распространения волны возбуждения. Небольшое утолщение на конце волокна, называемое синоптической бляшкой, содержит синаптические пузырьки размером 20—60 нм с медиатором — веществом, способствующим передаче возбуждения в синапсе. Синаптическая щель— пространство между пресинаптическим окончанием и участком мембраны эффекторной клетки является непосредственным продолжением межклеточного пространства. Постсинаптическая мембрана— участок эффекторной клетки, контактирующий с пресинаптической мембраной через синаптическую щель. Классификация синапсов. В соответствии с морфологическим принципом синапсы подразделяют на: • аксо-аксональные (между двумя аксонами); • аксодендритические (между аксоном одного нейрона и дендритом другого); • аксосоматические (между аксоном одного нейрона и телом другого); • дендродендритические (между дендритами двух или нескольких нейронов); • нервно-мышечные (между аксоном мотонейрона и исчерченным мышечным волокном); • аксоэпителиальные (между секреторным нервным волокном и грану-лоцитом); • межнейронные (общее название синапсов между какими-либо элементами двух нейронов). Все синапсы делят на центральные (в головном и спинном мозге) и периферические (нервно-мышечные, аксоэпителиальные и синапсы вегетативных ганглиев). В соответствии с нейрохимическим принципомсинапсы классифицируют по виду химического вещества — медиатора, с помощью которого происходит возбуждение и торможение эффекторной клетки. По способу передачи возбуждениясинапсы подразделяют на три группы. Первую составляют синапсы с химической природой передачи посредством медиаторов (например, нервно-мышечные); вторую — синапсы с передачей электрического сигнала непосредственно с пре- на постсинаптическую мембрану. Третья группа представлена «смешанными» синапсами, сочетающими элементы как химической, так и электрической передачи. По конечному физиологическому эффекту, а также по изменению потенциала постсинаптической мембраны, различают возбуждающие и тормозные синапсы. Механизм проведения возбуждения в синапсах. Передача возбуждения в химическом синапсе — сложный физиологический процесс, протекающий в несколько стадий. Он включает синтез и секрецию медиатора; взаимодействие медиатора с рецепторами постсинаптической мембраны; инактивирование медиатора. В целом синапс осуществляет последовательную трансформацию электрического сигнала, поступающего по нервному волокну, в энергию химических превращений на уровне синаптической щели и постсинаптической мембраны, которая затем снова трансформируется в энергию распространяющегося возбуждения в эффекторной клетке. Свойства синапсов. · Пластичность синапса. · Одностороннее проведение возбуждения. · Низкая лабильность и высокая утомляемость синапсаобусловлены временем распространения предыдущего импульса и наличием у него периода абсолютной рефрактерности. · Высокая избирательная чувствительность синапсак химическим веществам обусловлена специфичностью хеморецепторов постсинаптической мембраны. · Способность синапса трансформировать возбуждениесвязана с его низкой функциональной лабильностью и спецификой протекающих в нем химических процессов. · Синаптическая задержка, т.е. время между приходом импульса в преси-наптическое окончание и началом ответа, составляет 1—3 мс. Суммация возбужденийопределяется переходом местного возбуждения в распространяющееся в результате временного взаимодействия серии возбуждающих постсинаптических потенциалов. · Трофическая функция синапсов Нейромедиаторы - физиологически активные вещества, вырабатываемые нервными клетками. С помощью нейромедиаторов нервные импульсы передаются от одного нервного волокна другому волокну или другим клеткам через синаптическую щель. Нейромодуляторы - химические вещества, которые действуют как нейромедиаторы, но не ограничиваются синаптической щелью, а рассредотачиваются повсюду, модулируя действие многих нейронов в определенной области.
#8 Проанализируйте физиологические функции нейрона, обеспечивающие его «интегративную деятельность» (П.К.Анохин, 1974) Нейрон – основная структурная и функциональная единица центральной нервной системы. С позиции об анатомическом, функциональном и генетическом единстве нервной клетки нейрон с его отростками – дендритами и аксоном – является основной структурной единицей нервной системы. Основной функцией нейронов является их 1.способность к возбуждению. Возбуждение может возникать как в результате синаптических влияний на нейрон других нервных клеток, так и за счет эндогенных цитоплазматических процессов. Внешним выражением возбуждения нейрона является колебание электрического потенциала на его мембране. В невозбужденном нейроне регистрируется мембранный потенциал, или потенциал покоя, около —70 мВ. 2. синтез БАВ 3. воспроизведение информации 4. хранение и интеграция информации в пресинаптических окончаниях. 5. в аксоне: аксонный транспорт, генерация электрических импульсов, выделение медиатора. Каждый нейрон синтезирует в своем теле и затем выделяет во всех своих синапсах один и тот же медиатор, поэтому нейроны и ацетилхолиновой передачей возбуждения называются холинергическими, с адреналиновой – адренергическими. Дофаминергические нейроны у млекопитающих находятся в гипоталамусе. Норадренергические нейроны обнаружены в составе среднего мозга, моста и продолговатого мозга. В состав дорсального и медиального ядер продолговатого мозга, моста и среднего мозга входят серотонические нейроны. Интегративная деятельность нейрона: наличие многочисленных специфических хеморецептивных участков на постсинаптических мембранах нейронов позволило сформулировать химическую теорию работы нервных клеток. Электрические импульсы, приходящие к синапсам нейрона через медиаторы, трансформируются в химические процессы на постсинаптической мембране, которые в свою очередь вовлекают в биохимические процессы цитоплазматические и ядерные структуры клетки. Внутриклеточные молекулярные преобразования приходящих к нейрону гетерогенных возбуждений обозначаются как интегративная деятельность нервной клетки. В основе химической теории интегративной деятельности нейрона лежит утверждение о том, что метаболический процесс, развертывающийся в цитоплазме нейрона, закреплен генетически и является специфичным по отношению к отдельным постсинаптическим структурам. Внутринейронная функциональная связь хеморецептивной части постсинаптической мембраны с цитоплазматическими процессами обеспечивается целой группой биологически активных веществ, выполняющих функции универсальных регуляторов клеточного метаболизма. К таким веществам относят циклические пуриновые нуклеотиды, простагландины, гормональные вещества, ионы металлов. Такие медиаторы, как норадреналин, адреналин, дофамин, серотонин, гистамин, специфически активируют мембраносвязанный фермент аденилатциклазу, которая катализирует синтез цАМФ из АТФ. Медиатор ацетилхолин активирует гуанилатциклазу — фермент, катализирующий образование цГМФ из гуанозинтрифосфата. Повышение активности гуанилатциклазы обеспечивается окисью азота (N0). В свою очередь образование окиси азота из аргинина катализируется синтазой окиси азота, которая активируется Са2+, связанным с кальмодулином (регуляторный белок). Наличие кальция в нервной клетке имеет отношение к перераспределению ионов Na+ и К+ в клетке, синтезу и секреции медиаторов, синтезу белка и РНК, аксоплазматическому транспорту. При синаптической активации постсинаптических мембран из них выделяются простагландины, которые изменяют энергетический метаболизм нейронов, участвуют в регуляции возбудимости клетки, секреции медиаторов и гормонов. В молекулярных механизмах интегративной деятельности нейронов большая роль принадлежит эндогенным нейропептидам и так называемым мозгоспецифическим белкам. К эндогенным нейропептидам относятся: тиролиберин, холецистокинин, ангиотензин II, пролактин, вазопрессин. Они могут выступать не только в роли нейромедиаторов, но и в роли нейромодуляторов, т.е. оказывать влияние на высвобождение медиаторов из пресинаптических окончаний и постсинаптическую реакцию.
#9 Рассмотрите важнейшие физиологические свойства нервных центров, обеспечивающие процессы адаптации к изменениям внешних условий или внутренней среды организма. Функционально связанная совокупность нейронов, расположенных в одной или нескольких структурах ЦНС и обеспечивающих регуляцию той или иной функции или осуществление целостной реакции организма, называется центром нервной системы . Физиологическое понятие центра нервной системы отличается от анатомического представления о ядре, где близко расположенные нейроны объединяются общими морфологическими особенностями. Популярное:
|
Последнее изменение этой страницы: 2016-04-09; Просмотров: 1266; Нарушение авторского права страницы