![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Режимы работы электрической цепи
При подключении к источнику питания различного количества потребителей или изменения их параметров будут изменяться величины напряжений, токов и мощностей в электрической цепи, от значений которых зависит режим работы цепи и ее элементов. Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников (рис. 1.23). Рис. 1.23 Двухполюсником называют цепь, которая соединяется с внешней относительно нее частью цепи через два вывода а и b – полюса. Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит. Для расчета цепей с двухполюсниками реальные активные и пассивные элементы цепи представляются схемами замещения. Схема замещения пассивного двухполюсника П представляется в виде его входного сопротивления
Схема замещения активного двухполюсника А представляется эквивалентным источником с ЭДС Eэ и внутренним сопротивлением r0э, нагрузкой для которого является входное сопротивление пассивного двухполюсника Rвх=Rн. Режим работы электрической цепи (рис. 1.23) определяется изменениями параметров пассивного двухполюсника, в общем случае величиной сопротивления нагрузки Rн. При анализе электрической цепи рассматривают следующие режимы работы: холостого хода, номинальный, короткого замыкания и согласованный. Работа активного двухполюсника под нагрузкой Rн определяется его вольт-амперной (внешней) характеристикой, уравнение которой (1.10) для данной цепи запишется в виде (1.12) U=Eэ− Ir0э. Эта вольт-амперная характеристика строится по двум точкам 1 и 2 (рис. 1.24), соответствующим режимам холостого хода и короткого замыкания. Режим холостого хода В этом режиме с помощью ключа SA нагрузка Rн отключается от источника питания (рис. 1.23). В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения (1.12) напряжение на зажимах ab становится равным ЭДС Eэ и называется напряжением холостого хода Uхх U=Uхх=Eэ. Рис. 1.24 Режим короткого замыкания В этом режиме ключ SA в схеме электрической цепи (рис. 1.23) замкнут, а сопротивление Rн=0. В этом случае напряжение U на зажимах аb становится равным нулю, т.к. U=IRн, а уравнение (1.12) вольт-амперной характеристики можно записать в виде (1.13)
Значение тока короткого замыкания Iк.з соответствует т.2 на вольт-амперной характеристике (рис. 1.24). Анализ этих двух режимов показывает, что при расчете электрических цепей параметры активного двухполюсника Eэ и r0э могут быть определены по результатам режимов холостого хода и короткого замыкания: (1.14) Eэ=Uхх; При изменении тока в пределах Номинальный режим Номинальный режим электрической цепи обеспечивает технические параметры как отдельных элементов, так и всей цепи, указанные в технической документации, в справочной литературе или на самом элементе. Для разных электротехнических устройств указывают свои номинальные параметры. Однако три основных параметра указываются практически всегда: номинальное напряжение Uном, номинальная мощность Pном и номинальный ток Iном. Работа активного двухполюсника под нагрузкой в номинальном режиме определяется уравнением (1.12), записанном для номинальных параметров (1.15) Uном=Eэ− Iномr0э. На вольт-амперной характеристике (рис. 1.24) это уравнение определяется точкой 3 с параметрами Uном и Iном. Согласованный режим Согласованный режим электрической цепи обеспечивает максимальную передачу активной мощности от источника питания к потребителю. Определим параметры электрической цепи (рис. 1.23), обеспечивающие получение согласованного режима. При подключении нагрузки Rн к активному двухполюснику (рис. 1.23) в ней возникает ток
При этом на нагрузке выделится активная мощность (1.16)
Определим соотношение между сопротивлением нагрузки Rн и внутренним сопротивлением r0э эквивалентного источника ЭДС, при котором в сопротивлении нагрузки Rн выделяется максимальная мощность при неизменных значениях Eэ и r0э. С этой целью определим первую производную P по Rн и приравняем ее к нулю:
Так как выражение в знаменателе – конечное, то, отбрасывая не имеющее физического смысла решение Rн=− r0э, получим, что значение сопротивления нагрузки, согласованное с сопротивлением источника (1.17) Rн=r0э. Можно найти вторую производную и убедиться в том, что она отрицательна Подставив (1.17) в (1.16), получим значение максимальной мощности, которая может выделена в нагрузке Rн (1.18)
Полезная мощность, выделяющаяся в нагрузке, определяется уравнением (1.16). Полная активная мощность, выделяемая активным двухполюсником,
Коэффициент полезного действия (1.19)
если Rн=r0э, то Для мощных электротехнических устройств такое низкое значение КПД недопустимо. Но в электронных устройствах и схемах, где величина P измеряется в милливаттах, с низким КПД можно не считаться, поскольку в этом режиме обеспечивается максимальная передача мощности на нагрузку. Популярное:
|
Последнее изменение этой страницы: 2016-04-10; Просмотров: 793; Нарушение авторского права страницы