Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Закон Джоуля Ленца — Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка



Закон Ома для участка цепи

Формулировка закона Ома для участка цепи сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению.

Это простое выражение помогает на практике решать широчайший круг вопросов. Для лучшего запоминания решим задачу.

Задача 1.1

Рассчитать силу тока, проходящую по медному проводу длиной 100 м, площадью поперечного сечения 0, 5 мм2, если к концам провода приложено напряжение 12 B.

Задачка простая, заключается в нахождении сопротивления медной проволоки с последующим расчетом силы тока по формуле закона Ома для участка цепи. Приступим.

Закон Ома для полной цепи

Формулировка закона Ома для полной цепи - сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи, где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.

Здесь могут возникнуть вопросы. Например, что такое ЭДС? Электродвижущая сила - это физическая величина, которая характеризует работу внешних сил в источнике ЭДС. К примеру, в обычной пальчиковой батарейке, ЭДС является химическая реакция, которая заставляет перемещаться заряды от одного полюса к другому. Само слово электро движущая говорит о том, что эта сила двигает электричество, то есть заряд.

В каждом источнике присутствует внутреннее сопротивление r, оно зависит от параметров самого источника. В цепи также существует сопротивление R, оно зависит от параметров самой цепи.

Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.

Для закрепления материала, решим две задачи на формулу закона Ома для полной цепи.

Задача 2.1

Найти силу тока в цепи, если известно что сопротивление цепи 11 Ом, а источник подключенный к ней имеет ЭДС 12 В и внутреннее сопротивление 1 Ом.

 


Первый закон Кирхгофа

В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, ЭДС и сопротивлением всей цепи или, между напряжением и сопротивлением на каком-либо участке цепи определяется законом Ома.

На практике в цепях, токи, от какой-либо точки, идут по разным путям.
Точки, где сходятся несколько проводников, называются узлами, а участки цепи, соединяющие два соседних узла, ветвями.

В замкнутой электрической цепи ни в одной ее точке не могут скапливаться электрические заряды так, как это вызвало бы изменение потенциалов точек цепи. Поэтому электрические заряды притекающие к какому-либо узлу в единицу времени, равны зарядам, утекающим от этого узла за ту же единицу.
Разветвлённая цепь.
В узле А цепь разветвляется на четыре ветви, которые сходятся в узел В.

Обозначим токи в неразветвленной части цепи - I, а в ветвях соответственно

I1, I2, I3, I4.

У этих токов в такой цепи будет соотношение:

I = I1+I2+I3+I4;

Cумма токов, подходящих к узловой точке электрической цепи,
равна сумме токов, уходящих от этого узла.


 

При параллельном соединении резисторов ток проходит по четырем направлениям, что уменьшает общее сопротивление или увеличивает общую проводимость цепи, которая равна сумме проводимостей ветвей.

Обозначим силу тока в неразветвленной ветви буквой I.
Силу тока в отдельных ветвях соответственно I1, I2, I3 и I4.
Напряжение между точками A и B-U.
Общее сопротивление между этими точками — R.

По закону Ома напишем:

I = U/R; I1 = U/R1; I2 = U/R2; I3 = U/R3; I4 = U/R4;

Согласно первому закону Кирхгофа:

I = I1+I2+I3+I4; или U/R = U/R1+U/R2+U/R3+U/R4.

Сократив обе части полученного выражения на U получим:

1/R = 1/R1+1/R2+1/R3+1/R4, что и требовалось доказать.

Cоотношение для любого числа параллельно соединенных резисторов.
В случае, если в цепи содержится два параллельно соединенных резистора
R1 и R2, то можно написать равенство:

1/R =1/R1+1/R2;

Из этого равенства найдем сопротивление R, которым можно заменить два параллельно соединенных резистора:

Полученное выражение имеет большое практическое применение.
Благодаря этому закону производятся расчёты электрических цепей.

 

Второй закон Кирхгофа

В замкнутом контуре электрической цепи сумма всех эдс равна
сумме падения напряжения в сопротивлениях того же контура.


E1 + E2 + E3 +...+ En = I1R1 + I2R2 + I3R3 +...+ InRn.

При составлении уравнений выбирают направление обхода цепи и произвольно задаются направлениями токов.

Если в электрической цепи включены два источника энергии, эдс которых совпадают по направлению, т. е. согласно изо1, то эдс всей цепи равна сумме эдс этих источников,
т. е.
E = E1+E2
.

Если же в цепь включено два источника, эдс которых имеют противоположные направления, т. е. включены встречно изо2, то общая эдс цепи равна разности эдс этих источников
Е = Е1—Е2
.



  При последовательном включении в электрическую цепь нескольких источников энергии с различным направлением эдс общая эдс равна сумме эдс всех источников. Складывая эдс одного направления, берут со знаком плюс, а эдс противоположного направления - со знаком минус. В нашем случае, при встречном включении, положения щупов пришлись на противоположную полярность источника большего напряжения, поэтому на приборе отрицательный знак.
     
     


Благодаря этим законам производятся расчёты электрических цепей.

 

ЗАКОН КИРХГОФА

В электротехнике есть два основных способа соединения элементов электрической цепи.Первое -последовательном соединении при котором все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. Второе - при параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.

От себя скажу что есть и третий - объединяющий первый и второй

Немного притормозим и попытаемся сами для себя разжевать, что такое цепь, что такое узел и что такое элемент.

Узел - это место соединения нескольких деталей.

Цепь - это группа соединенных между собой последовательно или параллельно нескольких деталей.

Ну и оставшийся - элемент - является отельной частью цепи то есть деталью.

Как-то рыская по просторам интернета, я наткнулся на такую интересную фразу: " В основу гидравлического расчета водопроводных сетей (по аналогии с расчетом электрических сетей) положен постулат о том, что распределение воды по линиям сети происходит в соответствии с законами Кирхгофа, которые должны выполняться для любого потокораспределения."

Но ежели законы Кирхгофа применимы для гидравлики, то почему бы на основе гидравлики, т.е. труб с водой не объяснить законы Кирхгофа по электротехнике

Возьмем на примере выше изложенного эту мысль и применим - трубы, воду и насос.

Труба будет сопротивлением, Вода текущая по трубам - будет током (т.к. вода течет и ток течет)

А насос будет источником питания.

Сомневаюсь что кто либо оспорит что, чем тоньше труба тем меньшее кол-во воды проходит через нее, а это означит, что у тонкой трубы большее сопротивление по сравнению с толстой трубой.

 

Последовательное соединение

При последовательном соединении элементов сила тока на всех участках цепи одинакова и зависит от суммы сопротивлений. А проще говоря, если мы соединим резисторы последовательно, то на каждом из резисторов будет одинаковое течение..... извините - сила тока.

Если для протекания тока между двумя точками цепи существует только один путь, то цепь является последовательной. При последовательном соединении проводников сила тока в любых частях цепи одна и та же:

Чем больше резисторов соединено последовательно, тем больше противодействие протеканию тока. Другими словами, при добавлении резистора в цепь последовательно, общее сопротивление цепи возрастает. Общее сопротивление последовательной цепи является суммой отдельных сопротивлений цепи:

Rобщ = R1 + R2 + R3+...+ Rn.

Общее напряжение в цепи при последовательном соединении будет равно сумме падений напряжений на ее отдельных участках и равно напряжению на зажимах источника питания т е тока

Uпит=UR1+ UR2+ UR2+... URn

Разовьем мысль? в том случае, если в трубопроводе будут последовательно соединены трубы разного диаметра, то на любом из произвольно взятых нескольких ее участков количество протекающей воды скажем за секунду будет равно между собой. И соответственно объем втекающей в начало трубы воды будет равен объему вытекающей в самом конце

 

Параллельное соединение

При параллельном соединении, падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Для двух параллельно соединённых резисторов их общее сопротивление равно:

 

.

 

Если Rобщ = R1 = R2 = R3=...= Rn., то общее сопротивление равно:

 

 

При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.

Вот с трубами тут все так же просто, Как не соединяй параллельно трубы различного диаметра, но и тут закон Кирхгофа верен, сколько насос закачал воды - ровно столько из трубы ее и вытекло, причем по более тонким ее будет течь меньше чем по более толстым

 

Если расположить левую руку так, чтобы магнитные линии пронизывали ладонь, а вытянутые четыре пальца указывали направление тока в проводнике, то отогнутый большой палец укажет направление движения проводника.

Сила, действующая на проводник с током в магнитном поле, зависит как от тока в проводнике, так и от интенсивности магнитного поля.


Основной величиной, характеризующей интенсивность магнитного поля, является магнитная индукция В. Единицей измерения магнитной индукции является тесла ( Тл=Вс/м2 ).

О магнитной индукции можно судить по силе действия магнитного поля на проводник с током, помещенный в это поле. Если на проводник длиной 1 м и с током 1 А, расположенный перпендикулярно магнитным линиям в равномерном магнитном поле, действует сила в 1 Н (ньютон), то магнитная индукция такого поля равна 1 Тл (тесла).

Магнитная индукция является векторной величиной, ее направление совпадает с направлением магнитных линий, причем в каждой точке поля вектор магнитной индукции направлен по касательной к магнитной линии.

Сила F, действующая на проводник с током в магнитном поле, пропорциональна магнитной индукции В, току в проводнике I и длине проводника l, т. е.
F=BIl.

Эта формула верна лишь в том случае, когда проводник с током расположен перпендикулярно магнитным линиям равномерного магнитного поля.
Если проводник с током находится в магнитном поле под каким-либо углом а по отношению к магнитным линиям, то сила равна:
F=BIl sin a.
Если проводник расположить вдоль магнитных линий, то сила F станет равной нулю, так как а=0.

 

Электромагнитная индукция


Представим себе два параллельных проводника аб и вг , расположенных на близком расстоянии один от другого. Проводник аб подключен к зажимам батареи Б; цепь включается ключом К, при замыкании которого по проводнику проходит ток в направлении от а к б. К концам же проводника вг присоединен чувствительный амперметр А, по отклонению стрелки которого судят о наличии тока в этом проводнике.

Если в собранной таким образом схеме замкнуть ключ К, то в момент замыкания цепи стрелка амперметра отклонится, свидетельствуя о наличии тока в проводнике вг;
по прошествии же небольшого промежутка времени (долей секунды) стрелка амперметра придет в исходное (нулевое) положение.

Размыкание ключа К опять вызовет кратковременное отклонение стрелки амперметра, но уже в другую сторону, что будет указывать на возникновение тока противоположного направления.
Подобное отклонение стрелки амперметра А можно наблюдать и в том случае, если, замкнув ключ К, приближать проводник аб к проводнику вг или удалять от него.

Приближение проводника аб к вг вызовет отклонение стрелки амперметра в ту же сорону, что и при замыкании ключа К, удаление проводника аб от проводника вг повлечет за собой отклонение стрелки амперметра, аналогичное отклонению при размыкании ключа К.

При неподвижных проводниках и замкнутом ключе К ток в проводнике вг можно вызвать изменением величины тока в проводнике аб.
Аналогичные явления происходят и в том случае, если проводник, питаемый током, заменить магнитом или электромагнитом.

Так, например, на рисунке схематически изображена катушка (соленоид) из изолированной проволоки, к концам которой подключен амперметр А.

Если внутрь обмотки быстро ввести постоянный магнит (или электромагнит), то в момент его введения стрелка амперметра А отклонится; при выведении магнита будет также наблюдаться отклонение стрелки амперметра, но в другую сторону.

Электрические токи, возникающие при подобных обстоятельствах, называются индукционными, а причина, вызывающая появление индукционных токов, электродвижущей силой индукции.

Эта эдс возникает в проводниках под действием изменяющихся магнитных полей,
в которых находятся эти проводники.
Направление эдс индукции в проводнике, перемещающемся в магнитном поле, может быть определено по правилу правой руки, которое формулируется так:

Если правую руку расположить ладонью к северному полюсу так, чтобы большой отогнутый палец показывал направление движения проводника, то четыре пальца будут указывать направление эдс индукции.

Направление индукционного тока, а следовательно, и эдс индукции определяют также по правилу Ленца, которое формулируется следующим образом:

Эдс индукции имеет всегда такое направление, что созданный ею индукционный ток препятствует причине, ее вызывающей.
Величина эдс индукции, возникающей в замкнутом проводнике, пропорциональна скорости изменения магнитного потока, пронизывающего контур этого проводника.

Таким образом, если магнитный поток, пронизывающий контур замкнутого проводника, уменьшился на величину Ф в течение t секунд, то скорость уменьшения магнитного потока равна Ф/t.

Это отношение и представляет собой величину эдс индукции е, т. е.
е = -Ф/t.
Знак минус указывает на то, что ток, созданный эдс индукции, препятствует причине, вызвавшей эту здс.

Возникновение эдс индукции в замкнутом контуре происходит как при движении этого контура в магнитном поле, так и при изменении магнитного потока, пронизывающего неподвижный контур.
Если контур имеет витков, то индуктированная эдс
e = - Ф/t.

Самоиндукция и взаимоиндукция

 

  ЭДС самоиндукции Изменяющийся по величине ток всегда создает изменяющееся магнитное поле, которое, в свою очередь, всегда индуктируетЭДС. При всяком изменении тока в катушке (или вообще в проводнике) в ней самой индуктируется ЭДС самоиндукции. Когда ЭДС в катушке индуктируется за счет изменения собственного магнитного потока, величина этой ЭДС зависит от скорости изменения тока. Чем больше скорость изменения тока, тем больше ЭДС самоиндукции. Величина ЭДС самоиндукции зависит также от числа витков катушки, густоты их намотки и размеров катушки. Чем больше диаметр катушки, число ее витков и густота намотки, тем больше ЭДС самоиндукции. Эта зависимость ЭДС самоиндукции от скорости изменения тока в катушке, числа ее витков и размеров имеет большое значение в электротехнике. Направление ЭДС самоиндукции определяется по закону Ленца. ЭДС самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего ее тока. Иначе говоря, убывание тока в катушке влечет за собой появление ЭДС самоиндукции, направленной по направлению тока, т. е. препятствующей его убыванию. И, наоборот, при возрастании тока в катушке возникает ЭДС самоиндукции, направленная против тока, т. е. препятствующая его возрастанию. Не следует забывать, что если ток в катушке не изменяется, то никакой ЭДС самоиндукции не возникает. Явление самоиндукции особенно резко проявляется в цепи, содержащей в себе катушку с железным сердечником, так как железо значительно увеличивает магнитный поток катушки, а следовательно, и величину ЭДС самоиндукции при его изменении. Индуктивность Итак, нам известно, что величина ЭДС самоиндукции в катушке, кроме скорости изменения тока в ней, зависит также от размеров катушки и числа ее витков. Следовательно, различные по своей конструкции катушки при одной и той же скорости изменения тока способны индуктировать в себе различные по величине ЭДС самоиндукции. Чтобы различать катушки между собой по их способности индуктировать в себе ЭДС самоиндукции, введено понятие индуктивности катушек, или коэфициента самоиндукции. Индуктивность катушки есть величина, характеризующая свойство катушки индуктировать в себе ЭДС самоиндукции. Индуктивность данной катушки есть величина постоянная, не зависящая как от силы проходящего по ней тока, так и от скорости его изменения. Генри — это индуктивность такой катушки (или проводника), в которой при изменении силы тока на 1 ампер в 1 секунду возникает ЭДС самоиндукции в 1 вольт. На практике иногда нужна катушка (или обмотка), не обладающая индуктивностью. В этом случае провод наматывают на катушку, предварительно сложив его вдвойне. Такой способ намотки называется бифилярным. ЭДС взаимоиндукции Итак, мы знаем, что ЭДС индукции в катушке можно вызвать и не перемещая в ней электромагнит, а изменяя лишь ток в его обмотке. Но что чтобы вызвать ЭДС индукции в одной катушке за счет изменения тока в другой, совершенно не обязательно вставлять одну из них внутрь другой, а можно расположить их рядом И в этом случае при изменении тока в одной катушке возникающий переменный магнитный поток будет пронизывать (пересекать) витки другой катушки и вызовет в ней ЭДС. Взаимоиндукция дает возможность связывать между собой посредством магнитного поля различные электрические цепи. Такую связь принято называть индуктивной связью. Величина ЭДС взаимоиндукции зависит прежде всего от того, с какой скоростью изменяется ток в первой катушке. Чем быстрее изменяется в ней ток, тем создается большая ЭДС взаимоиндукции. Кроме того, величина ЭДС взаимоиндукции зависит от величины индуктивности обеих катушек и от их взаимного расположения, а также отмагнитной проницаемости окружающей среды. Следовательно, различные по своей индуктивности и взаимному расположению катушки и в различной среде способны вызывать одна в другой различные по величине ЭДС взаимоиндукции. Чтобы иметь возможность различать между собой различные пары катушек по их способности взаимно индуктировать ЭДС, введено понятие о взаимоиндуктивности или коэффициенте взаимоиндукции. Обозначается ся взаимоиндуктивность буквой М. Единицей ее измерения, так же как и индуктивности, служит генри. Генри — это такая взаимоиндуктивность двух катушек, при которой изменение тока в одной катушке на 1 ампер в 1 секунду вызывает в другой катушке ЭДС взаимоиндукции, равную 1 вольту. На величину ЭДС взаимоиндукции влияет магнитная проницаемость окружающей среды. Чем больше магнитная проницаемость среды, по которой замыкается переменный магнитный поток, связывающий катушки, тем сильнее индуктивная связь катушек и больше величина ЭДС взаимоиндукции. На явлении взаимоиндукции основана работа такого важного электротехнического устройства, как трансформатор.

Рисунок 1 — цепь, содержащая омическое индуктивное и емкостное сопротивление

 

Если, например, в цепь постоянного тока включить конденсатор то тока в цепи не будет, так как конденсатор на постоянном токе является разрывом цепи. Если же в цепи постоянного тока появится индуктивность, то ток не изменится. Строго говоря, изменится, так как катушка будет обладать омическим сопротивлением. Но изменение будет ничтожным.

Если же конденсатор и катушку включить в цепи переменного тока, то они будут оказывать сопротивление току пропорционально величине ёмкости и индуктивности соответственно. Кроме этого в цепи буде наблюдаться сдвиг фаз между напряжением и током. В общем случае ток в конденсаторе опережает напряжение на 90 градусов. В индуктивности же отстает на 90 градусов.

Емкостное сопротивление зависит от величины емкости и частоты переменного тока. Эта зависимость обратно пропорциональна, то есть с увеличением частоты и ёмкости сопротивление будет уменьшаться.

Устройство и принцип работы

Схема однофазного двухобмоточного трансформатора представлена ниже.

На схеме изображены основные части: ферромагнитный сердечник, две обмотки на сердечнике. Первая обмотка и все величины которые к ней относятся (i1-ток, u1-напряжение, n1-число витков, Ф1 – магнитный поток) называют первичными, вторую обмотку и соответствующие величины - вторичными.

 


Электрический генератор электрическая машина, предназначенная для преобразования механической энергии в энергию электрического поля. Источниками механической энергии может быть вода, пар, ветер, двигатель внутреннего сгорания и другие.

История

Первыми электрическими генераторами были – электростатические генераторы. Принцип их действия был основан на явлении статического электричества. Но широкого применения в промышленности эти генераторы не получили, так как они развивали высокое напряжение при малом токе. Ярким примером таких генераторов стал генератор Ван де Граафа. Этот генератор был изобретен Робертом Ван де Граафом в 1929 году и в основном служил для ядерных исследований.

Затем люди начали предпринимать попытки по созданию электромагнитных генераторов, то есть генераторов, работа которых основана на явлении электромагнитной индукции. Одним из первых в этом направлении стал гениальный физик Майкл Фарадей, который как раз и открыл явление электромагнитной индукции. Также он сформировал принцип работы генераторов, который был назван законом Фарадея. Его суть заключалась в том, что в проводнике, движущемся перпендикулярно магнитному полю, образовывалась разность потенциалов. Доказательством этого принципа стал диск Фарадея. Это простейший генератор, который представлял из себя медный диск, вращающийся между концами подковообразного магнита.

В 1832 году Ипполит Пикси построил первую динамо-машину. Она представляла из себя машину, в которой имелся статор, создающий постоянное магнитное поле и нескольких обмоток, которые в нем вращались. Ток снимался с помощью механического коммутатора. По сути это был первый генератор постоянного тока.

Потом развитие промышленности пошло вверх, и были изобретены генераторы переменного тока, асинхронные и постоянные двигатели.

Принцип действия

Принцип действия электрического генератора основан на взаимодействии проводника и магнитного поля, в котором он движется. Как всегда приводится классический пример с рамкой в магнитном поле. Когда рамка вращается, её пересекают линии магнитной индукции, при этом в рамке образовывается электродвижущая сила. Эта ЭДС заставляет ток течь по рамке и с помощью контактных колец попадать во внешнюю цепь. Примерно так устроен простейший электрический генератор.

Подробнее пример с рамкой разобран в статье – переменный синусоидальный ток.

Применение

Применение электрических генераторов обширно. Они применяются практически везде, где это только возможно. Снабжают
наши дома электроэнергией, заряжают аккумуляторы в автомобилях, используются в промышленности и многое другое.

В настоящее время стали популярны автономные бензиновые и дизельные электрогенераторы, которые могут служить источниками электрической энергии при её отключении, либо вообще при её отсутствии. Такие генераторы используются в быту и в строительстве, так как форма тока имеет искажения, то без применения специального инвертора, подключать к ним какие-то электронные устройства не целесообразно, так как они могут выйти из строя.

 

Простейший электродвигатель

Простейший электродвигатель работает только на постоянном токе (от батарейки). Ток проходит по рамке, расположенной между полюсами постоянного магнита. Взаимодействие магнитных полей рамки с током и магнита заставляет рамку поворачиваться. После каждого полуоборота коллектор переключает контакты рамки, подходящие к батарейке, и поэтому рамка вращается.

В некоторых двигателях для создания магнитного поля вместо постоянного магнита служит электромагнит. Витки проволоки такого электромагнита называются обмоткой возбуждения.

Электродвигатели используются повсюду. Даже дома вы можете обнаружить огромное количество электродвигателей. Электродвигатели используются в часах, в вентиляторе микроволновой печи, в стиральной машине, в компьютерных вентиляторах, в кондиционере, в соковыжималке и т. д. и т. п. Ну а электродвигатели, применяемые в промышленности, можно перечислять бесконечно. Диапазон физических размеров – от размера со спичечную головку до размера локомотивного двигателя.

Показанный ниже промышленный электродвигатель работает и на постоянном, и на переменном токе. Его статор – это электромагнит, создающий магнитное поле. Обмотки двигателя поочередно подключаются через щетки к источнику питания. Одна за другой они поворачивают ротор на небольшой угол, и ротор непрерывно вращается.

УСТРОЙСТВО

Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц. Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами. Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.

Фото — полупроводниковый диод

Для создания полупроводниковых диодов используются германий и селен, как и более 100 лет назад. Их структура позволяет использовать детали для улучшения электронных схем, преобразования переменного и постоянного тока в однонаправленный пульсирующий и для совершенствования разных устройств. На схеме он выглядит так:

Фото — обозначение диода

Существуют разные виды полупроводниковых диодов, их классификация зависит от материала, принципа работы и области использования: стабилитроны, импульсные, сплавные, точечные, варикапы, лазер и прочие типы. Довольно часто используются аналоги мостов – это плоскостной и поликристаллический выпрямители. Их сообщение также производится при помощи двух контактов.

Основные преимущества полупроводникового диода:

1. Полная взаимозаменяемость;

2. Отличные пропускные параметры;

3. Доступность. Их можно купить в любом магазине электро-товаров или снять бесплатно со старых схем. Цена начинается от 50 рублей. В наших магазинах представлены как отечественные марки (КД102, КД103, и т. д.), так и зарубежные.

 

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ Биполярным транзистором называют полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и предназначеный для усиления сигнала. Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах. Биполярные транзисторы можно классифицировать по материалу: германиевые и кремниевые; по виду проводимости: типа р-n-р и n-p-n; по мощности: малая (Рмах < 0, 3Вт), средняя (Рмах = 1, 5Вт) и большая (Рмах > 1, 5Вт); по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ. В таких транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок. Отсюда пошло их название: биполярные. Биполярный транзистор представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n-р-n средняя область имеет дырочную, а крайние области – электронную электропроводность. Транзисторы типа р-n-р имеют среднюю область с электронной, а крайние - с дырочной проводностью. Средняя область транзистора называется базой, одна крайняя область – эмиттером, вторая – коллектором. Таким образом в транзисторе имеются два р-n- перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором. Эмиттером - это область транзистора для инжекции носителей заряда в базу. Коллектором - область, назначением которой является извлечение носителей заряда из базы. Базой называется область, в которую инжектируются эмиттером неосновные для этой области носители заряда. Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера гораздо выше проводимости базы, а проводимость коллектора меньше проводимости эмиттера. В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК). Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Тиристор – это полупроводниковый прибор, который изготавливается на основе монокристаллического полупроводника, имеющего три (и более) p-n-перехода. Тиристор характеризуются наличием двух устойчивых состояний:

 

· закрытый – полупроводник находится в состоянии низкой проводимости, ток практически не протекает

· открытый – полупроводник в состоянии высокой проводимости, ток проходит через элемент фактически без ограничений

 

По сути, тиристор – электрический силовой управляемый ключ (правда, его управляемость не является стопроцентной). В технической литературе встречается и другое название – однооперационный тиристор, ведь управляющий сигнал может только перевести тиристор в открытое (рабочее) состояние. Чтобы выключить тиристор, необходимо принять особые меры, направленные на уменьшение прямого тока до минимума (нуля).

Структура тиристора – это последовательность четырех, соединенных последовательно, слоев p и, соответственно, n типа, образующих структуру р-n-р-n:

 

· крайняя область, на которую поступает положительный (+) полюс питания – анод, р – типа

· другая крайняя область, к которой прикладывается отрицательное (-) напряжение, катод, – > n типа

· управляющий электрод (конструкционно может быть предусмотрено размещение до 2 электродов) присоединяется к внутренним слоям.

· Выпрями́ тель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток[1][2].

· Большинство выпрямителей создаёт не постоянный, а пульсирующий ток, для сглаживания пульсаций применяют фильтры.

· Устройство, выполняющее обратную функцию — преобразование постоянного тока в переменный ток называетсяинвертором.

· Из-за принципа обратимости электрических машин выпрямитель и инвертор являются двумя разновидностями одной и той же электрической машины (справедливо только для инвертора на базе электрической машины).

 

Закон Ома для участка цепи

Формулировка закона Ома для участка цепи сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению.

Это простое выражение помогает на практике решать широчайший круг вопросов. Для лучшего запоминания решим задачу.

Задача 1.1

Рассчитать силу тока, проходящую по медному проводу длиной 100 м, площадью поперечного сечения 0, 5 мм2, если к концам провода приложено напряжение 12 B.

Задачка простая, заключается в нахождении сопротивления медной проволоки с последующим расчетом силы тока по формуле закона Ома для участка цепи. Приступим.

Закон Ома для полной цепи

Формулировка закона Ома для полной цепи - сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи, где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 2629; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.094 с.)
Главная | Случайная страница | Обратная связь