Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Конструкции покрытий промышленных зданийСтр 1 из 6Следующая ⇒
Конструкции покрытий промышленных зданий Конструкции покрытий промышленных зданий могут быть утепленными и неутепленными.
В состав конструкции покрытия входит собственно несущая конструкция в виде железобетонной монолитной, чаще сборной плиты из отдельных элементов, а также паро-, тепло- и гидроизоляция. В неутепленном варианте это может быть армоцементная, аобестоцементная, стальная или стеклопластиковая оболочка с соответствующими защитными покрытиями. Несущая конструкция в утепленных кровлях, как правило, выполняется из сборных железобетонных плит корытного сечения шириной 1, 5— I 3 м, пролетом 6 или 12 м, при веденных выше типов, перекрывающих здание по фермам, реже из монолитного железобетона.
Пароизоляционную прослойку в утепленных кровлях устраивают в виде 2—4-слойного ковра из рубероида или пергамина на битумной мастике. Более долговечная паро- изоляция получается при применении рулонного материала на негниющей основе — гидроизола или безосновного бризола. С увеличением выпуска рулонных пластиков (полиэтилена, полиизобутилена, тонкого винипласта и пластиката из полихлорвинила), укладываемых на битумной мастике или синтетических клеях, они получат широкое применение. Швы рулонных или листовых пластиков рекомендуется сваривать. Теплоизоляция в конструкции покрытий промышленных зданий с агрессивными средами и влажными процессами должна выполняться из негниющих и малоувлажняемых материалов, водостойких поропластов, минеральных матов, газо- и керамзитобетонов. В неутепленных, холодных покрытиях неотапливаемых промышленных зданий несущая конструкция может быть осуществлена из сборных железобетонных плит, из армоцементных оболочек или листов, из асбоцементных листов обычного или усиленного профиля, из стеклопластиковых листов плоских или волнистых, из стальных волнистых листов толщиной 1— 2 мм или плоских листов толщиной 2—4 мм. Ведутся работы по метал-лопластику в виде тонких стальных листов толщиной 1—2 мм, плакированных тонким слоем пластмассы. Неутепленные покрытия то железобетонным плитам или армоцементным оболочкам изолируются двумя-тремя слоями рулонных материалов, наклеиваемых на мастиках или в виде безрулонного покрытия— покраски, например, полиизобутиленом, растворенным в стироле. Толщина слоя такой покраски доводится до 1 мм за один-два раза. Подобного рода покрытия применены в опытном порядке на одном из павильонов строительного отдела ВДНХ и на кровле здания одной из теплоэлектростанций с хорошими результатами.
Железобетонный карска промышленных зданий. Каркас одноэтажного промышленного здания состоит из фундаментов, фундаментных балок, колонн, несущих элементов докрытая, подкрановых балок и связей ( рис.70).
Рис. 70. Основные элементы одноэтажного промышленного здания: 1 - столбчатые фундаменты; 2 - фундаментные балки; 3 - колонны; 4- подкрановые балки; 5- фермы; 6 - плиты покрытия; 7 - фонарь; 8 - окна; 9 - стены; 10 - связи. Каркасы выполняют в основном из сборных железобетонных элементов. Монолитный железобетон применяют при наличии соответствующего технологического обоснования. В зданиях с большими пролетами и высотой при грузоподъемности мостовых кранов 50 т и более, а также в особых условиях строительства и эксплуатации допускаются стальные каркасы. В ряде случаев применяются смешанные каркасы. При выборе материалов необходимо учитывать размеры пролетов и шага колонн, высоту здания, величину и характер действующих на каркас нагрузок, наличие агрессивных факторов, требования огнестойкости, долговечности и технико-экономические обоснования. Каркас промышленного здания подвергается сложному комплексу силовых и несиловых воздействий. Силовые воздействия возникают от постоянных и временных нагрузок (собственная масса конструкций, снег, ветер, люди, эксплуатационное оборудование, грузоподъемные устройства и т. д.). В связи с этим элементы каркаса должны отвечать требованиям прочности и устойчивости. Несиловые воздействия образуются от влияния внешней и внутренней среды в виде положительных и отрицательных температур, пара, содержащихся в воздухе химических веществ, действия минеральных масел, кислот и т. д. Все эти компоненты разрушают структуру строительных материалов, а следовательно, и конструкций. Поэтому элементы каркаса должны обладать термостойкостью, влагостойкостью и биостойкостью. При строительстве промышленного здания наибольший расход материалов приходится на несущие элементы здания, составляющие его каркас. Поэтому снижение расхода этих материалов обеспечивает эффективность строительства. Оно может быть достигнуто более полным использованием физико-механических свойств материалов, в основном, бетона и железобетона, так как именно эти материалы являются основными при изготовлении конструкций каркаса. Экономия может быть достигнута и совершенствованием конструктивной формы элементов. Так, например, замена железобетонных колонн прямоугольного сечения на двухветвевые уменьшает расход железобетона на 22.-.26 %, применение пространственных покрытий вместо плоских сокращает расход бетона на 26 % и стали до 34 %. Большую экономию дает использование материалов высокой прочности. Так, повышение классов бетона с ВЗО до В50...В60 позволяет сократить его расход в балках и фермах на 8...10 %, а применение высокопрочной арматуры обеспечивает экономию стали до 36%. Типовым решением при конструировании сборного железобетонного каркаса одноэтажного промышленного здания является применение поперечных рам из сборных железобетонных колонн и несущих элементов покрытия (балок или ферм) и продольных элементов в виде фундаментных, подкрановых и обвязочных балок, плит покрытия и связей. Соединение несущих элементов покрытия с колоннами в этом случае принято шарнирным. Это позволяет осуществить независимую типизацию балок, ферм и колонн, так как при шарнирном соединении нагрузка, приложенная, к одному из элементов, не вызывает изгибающего момента в другом. Достигается высокая степень универсальности элементов каркаса, возможность их использования для различных решений и типов несущих элементов покрытия. Кроме того, шарнирное соединение колонн, балок и ферм конструктивно значительно проще жесткого, тем самым облегчается изготовление и монтаж конструкций. Все элементы сборных железобетонных каркасов унифицированы и при проектировании их подбор производят по специальным каталогам. В каркасах большой протяженности устраивают температурные швы, расчленяющие каркас на отдельные участки, называемые температурными блоками. Каждый температурный блок должен иметь длину не более 72 м, ширину не более 144м и обладать самостоятельной
Конструктивные схемы здании Несущие элементы здания в совокупности образуют пространственную систему, называемую его несущим остовом. Несущий остов должен иметь достаточную прочность и обеспечивать пространственную жесткость и устойчивость здания, тогда кйк ограждающие конструкции должны обладать стойкостью против атмосферных и других физико-химических воздействий, а также достаточными тепло- и звукоизоляционными свойствами. В зависимости от вида несущего остова различают две основные конструктивные схемы зданий — бескаркасную (с несущими стенами) и каркасную. Остов бескаркасных одноэтажных и многоэтажных зданий с несущими наружными и внутренними (продольными или поперечными) стенами представляет собой коробку, пространственная жесткость которой обеспечивается перекрытиями и стенами, образующими жесткие горизонтальные и вертикальные диафрагмы. Устойчивость такого несущего остова зависит от надежности связи между стенами и перекрытиями, их жесткости и устойчивости. В каркасных зданиях все нагрузки воспринимаются системой стоек (колонн), которые вместе с горизонтальными элементами (прогонами, ригелями) образуют каркас. Каркасные схемы зданий бывают с полным и неполным каркасами. Каркас называют полным, если его вертикальные элементы расположены как по периметру наружных стен, так и внутри здания. Возможна схема с несущими наружными стенами и внутренним каркасом, колонны которого заменяют внутренние несущие стены. Такие каркасы называют неполными. Устойчивость наружных стен в зданиях с неполным каркасом обеспечивают в основном элементы каркаса и перекрытия. Такую конструктивную схему применяют в многоэтажных гражданских и промышленных зданиях при отсутствии значительных динамических нагрузок. Одноэтажные каркасные здания. Каркас одноэтажного промышленного здания состоит из железобетонных или стальных колонн, образующих вместе с несущими конструкциями покрытия поперечные рамы, и разного рода продольных элементов — фундаментных, обвязочных и подкрановых балок, подстропильных ферм, а также различного рода связей, которые придают каркасу в целом и отдельным элементам пространственную жесткость и устойчивость. Расстояние между колоннами каркаса в продольном направлении (вдоль оси здания) называется шагом колонн, в поперечном — пролетом. Размеры пролетов и шага колонн принято называть сеткой колонн. Одноэтажные каркасные здания широко применяют в промышленном (рис. 1, а) и сельскохозяйственном строительстве (рис. 1, б). Такие здания состоят из железобетонного (стального) каркаса, стен и покрытия. Каркас состоит из вертикальных элементов — колонн и горизонтальных — ригелей, балок и ферм. По балкам или фермам укладывают плиты покрытия, выполняют кровлю, а в необходимых случаях устраивают световые или аэрационные фонари.
Рис. 1. Одноэтажные промышленные и сельскохозяйственные здания а — промышленное здание с мостовыми кранами; б —сельскохозяйственное здание с несущими стенами; 1 — колонна; 2 — ригель; 3 — покрытие; 4 — подкрановая балка Каркас воспринимает все внешние нагрузки от покрытия и массы конструкций каркаса, вертикальные и горизонтальные крановые нагрузки, а также горизонтальные нагрузки от ветра, воздействующего на стены. В зданиях сельскохозяйственного назначения используют в основном каркасы из железобетонных конструкций. В промышленных зданиях при пролетах 30 м и более каркас делают смешанным: колонны железобетонные, а фермы стальные. Многоэтажные промышленные здания каркасного типа (рис. 21) широко распространены в легкой, пищевой, химической, приборостроительной, электротехнической промышленности и аналогичных производствах. Рис. 2. Схема многоэтажного промышленного здания каркасного типа 1 — фундамент; 2 — колонна; 3 — ригель; 4 — связь; 5 — балка покрытия; 6 — плита покрытия; 7 — стеновая панель Каркас зданий состоит из колонн и ригелей, образующих многоярусные рамы с жесткими узлами. Рамы располагают поперек здания, а в продольном направлении устойчивость здания обеспечивают стальными связями, которые устанавливают по каждому продольному ряду колонн в середине температурных отсеков. Число пролетов в каркасах бывает различным — от одного до грехче тырех, а иногда и больше. Размеры пролетов 6, 9 и 12 м. Верхние этажи шириной 12 и 18 м перекрывают стропильными балками или фермами и плитами аналогично покрытиям одноэтажных зданий. Этажи могут иметь высоту 3, 6—7, 2 м с градацией размеров через 0, 6 м. Стены выполняют из панелей или кирпичной кладки. Многоэтажные гражданские здания сооружают трех типов: каркасно-панельными, бескаркасно-панельными и с несущими кирпичными стенами. Каркасно-панельные здания состоят из каркаса, плит перекрытий и покрытий, перегородок и панелей стен (рис. 3). Пролеты каркасов зданий приняты 5, 6 и 6 м. Шаг колонн вдоль здания 3, 2 и 3, 6 м. Высота этажа в гражданских зданиях зависит от назначения зданий и принимают ее равной (м): 2, 8 — для жилых домов и гостиниц; 3, 3 — для административных зданий, учебных заведений, торговых предприятий; 3, 6 и 4, 2 — для зданий специального назначения (конструкторские бюро, лаборатории). Широкое распространение, особенно в жилищном строительстве, получили бескаркасные крупнопанельные здания. Пятиэтажные жилые дома и здания гостиничного типа строят с несущими наружными и внутренними поперечными и продольными перегородками (рис. 4, а), с самонесущими наружными стенами и несущими поперечными перегородками (рис. 4, б), а также с несущими наружными и внутренними стенами (рис. 4, в). Последнее решение допускает более свободную внутреннюю планировку зданий.
Основания и фундаменты. Основные требования, классификация. Все здания и сооружения опираются на поверхностные слои земли (глины, пески, скальные породы и др.), именуемые в строительной практике грунтами.
Объемно-планировочные и конструктивные решения промышленных зданий. Объемно-планировочное решение промышленного здания определяется требованиями размещаемого в нем производственного процесса. Следовательно, проектированию здания должно предшествовать тщательное изучение технологического процесса, его основных характеристик, особенностей. При этом выявляются последовательность технологических операций и организация производственных потоков, вес и габариты технологического оборудования и изделий, способы транспортировки материалов (вид и грузоподъемность подъемно-транспортного оборудования), наличие производственных вредностей, требования к температурно-влажностному режиму внутреннего воздуха и пр. Кроме этого, объемно-планировочное решение должно обеспечить возможность реконструкции и модернизации производства, переход на новые виды продукции. Далее рассматриваются характеристики участка, предназначенного для застройки: рельеф и геологические условия, свободное пространство или затесненный участок в городской застройке, насыщенность инженерными коммуникациями; оцениваются возможные архитектур но-ком позиционные решения с точки зрения размещения здания на генплане и характера окружающей застройки. Принимаются во внимание техническая база, наличие тех или иных строительных материалов и конструкций для возведения здания. В случаях, когда с учетом удовлетворения всего комплекса требований допускается возможность строительства одно — или многоэтажного здания, проводится предварительный технико-экономический сравнительный анализ стоимости и трудовых затрат на возведение здания различных вариантов. На основе всех этих факторов определяются этажность и рациональные параметры промышленного здания.
Конструктивные решения промышленных зданий Конструктивные системы промышленных зданий выполняют по различным конструктивным схемам. В основном для промышленных зданий применяют каркасную схему, в которых прочность, жесткость и устойчивость обеспечивается пространственными рамными каркасами как с поперечным или продольным расположением ригелей, так и безригельными.
ОТДЕЛЬНЫЕ ОПОРЫ · ж/б колонны · стойки из асбестоцементных труб, заполняемые по необходимости арматурой и бетоном. · кирпичные столбы · деревянные стойки ПРОГОНЫ Называются горизонтальные конструктивные элементы, воспринимающие вертикальные и горизонтальные нагрузки и на которые опираются плиты перекрытия. Ж/б прогоны опирают на колонны или стены через ж/б подушки. На внутренних и наружных опорах прогоны соединяют между собой и с стенами анкерами. Опирание прогонов: - непосредственно на колонну (платформенный стык) · в прорез колонны (вилочное соединение) · на консоли колонн
Перекрытия и полы. Основные требования, классификация и Перекрытия наряду со стенами являются основными конструктивными элементами зданий, разделяющими их на этажи. По расположению в здании перекрытия могут быть междуэтажными, чердачными и надподвальными. Перекрытие должно быть прочным, т.е. выдерживать действующие на него постоянные и временные нагрузки. Важным требованием, определяющим эксплуатационные качества перекрытия, является жесткость. Если жесткость перекрытия недостаточна, то под влиянием нагрузок оно дает значительные прогибы, что вызывает появление трещин. Величина жесткости оценивается значением относительного прогиба, равного отношению абсолютного прогиба к величине пролета. Его значение не должно превышать 1/200 для чердачных перекрытий и 1/250 для междуэтажных. Теплозащитные требования предъявляют к чердачным и надподвальным перекрытиям отапливаемых зданий, а также междуэтажным перекрытиям, отделяющим отапливаемые помещения этажей от неотапливаемых. Особое внимание необходимо уделять конструированию перекрытия в местах примыкания к несущим стенам, так как возможно образование мостиков холода в стенах, что приведет к дискомфортным условиям эксплуатации здания. Перекрытия должны обладать достаточной звукоизоляцией. В связи с этим применяют слоистые конструкции перекрытий с различными звукоизоляционными свойствами, опирают основные конструкции перекрытия на звукоизоляционные прокладки, а также тщательно заделывают неплотности. Перекрытия должны также удовлетворять противопожарным требованиям, соответствующим классу здания. В зависимости от назначения помещений к перекрытиям могут предъявляться также специальные требования: водонепроницаемость (для перекрытий в санузлах, душевых, банях, прачечных), несгораемость (в пожароопасных помещениях), воздухонепроницаемость (при размещении в нижних этажах лабораторий, котельных и др.). Независимо от места расположения перекрытия в здании его конструктивное решение должно быть экономически и технологически обоснованым. В зависимости от конструктивного решения перекрытия бывают: балочные, в которых основной несущий элемент – балки, на которые укладывают настилы, накаты и другие элементы покрытия; плитные, состоящие из несущих плит или настилов, опирающихся на вертикальные несущие опоры здания или на ригели и прогоны; безбалочные, состоящие из плиты, связанной с вертикальной опорой несущей капителью. В зависимости от применяемого материала основных несущих элементов, непосредственно передающих нагрузки на стены и прогоны, перекрытия бывают железобетонные, деревянные и по стальным балкам. Полы зданий. Конструкция пола зависит от вида производства, особенностей технологического процесса и санитарно-гигиенических требований. Требования к полам - механической прочностью - водонепроницаемостью - кислотноупорностью - жаростойкостью Различают полы: - грунтовые (глиняные, глинобитные) - гравийные и щебёночные - цементные и бетонные - асфальтобетонные - каменные - керамические - деревянные - полы с синтетическими покрытиями - полы специального назначения (стальные, чугунные).
Лестницы Лестницы могут быть: - основные; - вспомогательные; - пожарные; - аварийные; - технологические. Лестницы выполняются из: - металла; - бетона; - дерева. Требования В зданиях с числом этажей более двух основные лестницы, связывающие этажи, должны иметь один общий пролет. Использование трансформируемых лестниц в качестве основных, соединяющих жилые этажи, не допускается. Они используются только для доступа в чердачные или подвальные помещения. Полезная ширина марша основной междуэтажной лестницы для прохода одного человека по нормам проектирования лестниц должна быть не менее 0, 8 м, для одновременного прохода двух человек - не менее 1, 0 м и в любом случае не менее ширины эвакуационного выхода (т.е. дверей, через которые предусматривается вход на лестницу). Полезная ширина марша поворотной лестницы и лестницы, соединяющей более двух этажей (при проектировании лестниц по СНиП) должна быть рассчитана на одновременный проход не менее двух человек, т. е. составлять не менее 1, 0 м. Меньшая ширина марша таких лестниц не рекомендуется из-за того, что люди, которые собираются вступить на поворотную лестницу, могут сделать это одновременно в противоположных ее концах. При этом, если они не видят друг друга, и им будет трудно разминуться при встрече. Перенос крупногабаритных вещей на поворотных лестницах шириной марша менее 1, 0 м весьма проблематичен. Полезная ширина марша лестниц, на которых предусматриваются специальные подъемники для инвалидов, должна быть не менее 1, 5 м. Эта величина также регламентируется нормами проектирования лестниц. Ширина маршей двухмаршевых и многомаршевых лестниц должна быть при проектировании лестниц по СНиП одинакова по всей длине лестницы. Между маршами лестницы, расположенными во встречном друг к другу направлении, по нормам проектирования лестниц должен быть зазор не менее 50 мм. Марш должен иметь не менее 3 и не более 18 ступеней; число ступеней в марше согласно нормам проектирования лестниц по СНиП желательно предусматривать нечетное, т. к. человеку удобнее начинать и заканчивать передвижение по лестнице одной и той же ногой - правой или левой. Уклон лестницы должен быть не более 1: 1 (угол подъема 45°) и не менее 1: 2 (угол подъема 26° 40'). Предельные уклоны для лестниц, предназначенных для ходьбы, составляют по верхней границе крутизны 1: 0, 85 (50°), а по нижней 1: 2, 75 (20°). Для подъема по уклону свыше 1: 0, 85 применяются приставные лестницы, а для подъема по уклону менее 5 - пандусы, т.е. дорожки с ровной поверхностью 12. Рекомендуемый уклон лестниц находится в пределах 1: 2 1: 1, 75 (26°7'30°). Высота ступеней в пределах одного марша не должна различаться более чем на 5 мм, что обеспечивает равномерный уклон по всему маршу, и должна быть не более 200 и не менее 120 мм. Ширина ступени основных лестниц по требованиям к лестницам должна быть не менее 250 мм. Для лестниц, ведущих в нежилые помещения, высота и ширина ступеней должна быть 200 мм. При ширине ступени до 260 мм величина ее выступа (рис. 9, величина С) не должна превышать 30 мм. Забежные (клиновидные) ступени на внутренней границе полезной ширины по нормам проектирования лестниц должны иметь проступь шириной не менее 100 мм, а на средней линии марша - не менее 260 мм. Радиус кривизны средней линии марша с забежными ступенями при проектировании маршевых лестниц должен быть не менее 30 см. Полезная ширина лестничных площадок должна быть не менее полезной ширины примыкающих к ней маршей. Длина лестничных площадок, находящихся между маршами, должна быть не менее 2 величин длины среднего шага взрослого человека, т.с не менее 1, 3-1, 4 м. Длина лестничных площадок у входных дверей должна быть не менее 1, 0 м в том случае, если дверь раздвижная или открывается и противоположную от лестницы сторону. Длина и ширина лестничных площадок перед дверями, открывающимися в сторону лестниц, при проектировании маршевых лестниц, рассчитывается с учетом ширины дверного полотна и безопасного положения человека у двери в момент ее открытия. Высота ограждения (перил) междуэтажных лестниц должна быть не менее 0, 9 м, расстояние в свету между их стойками - не более 0, 15 м. Для лестниц, используемых детьми, эти величины должны составлять соответственно 1, 5 и 0, 1м. Высота ограждения наружных входных лестниц при подъеме на 3 и более ступени должна быть не менее 0, 8 м. Требования к лестницам по освещенности также регламентированы. Лестницы должны быть хорошо освещены, особенно первые и последние ступени маршей. Оконные проемы, находящиеся на уровне лестничного марша в прилегающей к нему стене, должны быть ограждены.
Жесткости. В зависимости от характера и способа распределения несущих и ограждающих функций между элементами конструктивная система здания бывает бескаркасная, каркасная и смешанная. В зданиях бескаркасной системы опорой для перекрытий и крыши служат наружные и внутренние стены. Они передают воспринимаемую нагрузку на ленточный фундамент. При этом внутренние несущие стены могут иметь продольное или поперечное направление, в зависимости от чего выбирается направление укладываемых по стенам плит или балок перекрытий. В зданиях каркасной системы несущим остовом служит система из опирающихся на фундаменты стоек (колонн) и горизонтальных связей (ригелей), образующих каркас здания. Колонны каркаса размещены как по периметру, так и внутри здания. Такие конструктивные схемы широко используются в промышленном строительстве, а также при сооружении общественных зданий. Основным достоинством каркасных зданий является их высокая экономичность, так как при каркасных системах стены служат лишь ограждающими конструкциями и поэтому их можно делать тонкими, одинаковой толщины по всей высоте здания (рис. 3).Каркас обычно выполняют из железобетонных сборных конструкций. Колонны сечением 300X300 или 400Х400 мм устанавливают на расстоянии 6 и 12 ж друг от друга. Они опираются на железобетонные башмаки стаканного типа, которые установлены на железобетонные блочные или свайные фундаменты. Ригели каркаса также сборные железобетонные, прямоугольного сечения, высотой 450 мм. Соединяют элементы каркаса, сваривая закладные стальные детали, которые заложены в конструкции при их изготовлении. Общая устойчивость и пространственная жесткость здания зависят от взаимного сочетания и расположения конструктивных элементов, прочности узлов соединений и т.д. В зданиях с несущими стенами пространственная жесткость обеспечивается:
В каркасных зданиях пространственная жесткость обеспечивается:
Указанные конструктивные решения дают лишь общие конструктивные представления о мерах по обеспечению пространственной жесткости здания.
Что такое Единая Модульная Система? Дать понятие унификации, Единая модульная система в строительстве (ЕМС) представляет собой совокупность правил координации размеров объемно-планировочных и конструктивных элементов зданий и сооружений, строительных изделий и оборудования на базе модуля 100 мм. Цель применения ЕМС - создание основы для типизации и стандартизации в проектировании, производстве строительных изделий и в строительстве. Унификация – научно обоснованное сокращение числа общих параметров зданий и сооружений, а также их элементов путем устранения функциональных различий между ними (таким образом, унификация – это приведение к единообразию размеров конструктивных элементов). типизация – сведение множества типов конструкций и изделий (а также зданий и сооружений) к обоснованному ограниченному количеству. Стандартизация – утверждение для обязательного применения наилучших типовых конструкций и изделий, прошедших проверку в эксплуатации
Светоаэрационные фонари зданий. Аэрация- организованный, управляемый и регулируемый воздухообмен. Для аэрации в оконных проемах и фонарях устраивают достаточные по площади приточные и вытяжные отверстия. Регулируя уклон створок можно регулировать объемом воздухообмена в соответствие с внутренними и внешними условиями (температура, скорость и направление ветра). Поступление и удаление воздуха происходит из-за разности давления, возникающих вследствие разности температур. Для лучшего эффекта аэрации необходимо создать высотный перепад между приточным и вытяжным отверстием, меняющие в зависимости от времени года. Вытяжные отверстия располагаются выше рабочего места. Обычно в створных элементах фонарей. Поэтому цеха с большим выделением тепла должны иметь достаточную высоту. Приточные отверстия распологают в 2 яруса, исключая воздейчтвие холодного воздуха на Популярное:
|
Последнее изменение этой страницы: 2016-04-10; Просмотров: 6206; Нарушение авторского права страницы