Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Гуморальные неспецифические факторы защиты



гуморальные факторы — система комплемента. Комплемент — это комплекс 26 белков в сыворотке крови. Обозначается каждый белок, как фракция, латинскими буквами: С4, С2, СЗ и т. д. В условиях нормы система комплемента находится в неактивном состоянии. При попадании антигенов он активируется, стимулирующим фактором является комплекс антиген — антитело. С активации комплемента начинается любое инфекционное воспаление. Комплекс белков комплемента встраивается в клеточную мембрану микроба, что приводит к лизису клетки. Также комле-мент участвует в анафилаксии и фагоцитозе, так как обладает хемотаксической активностью. Таким образом, комплемент является компонентом многих им-мунолитических реакций, направленных на освобождение организма от микробов и других чужеродных агентов;

Спид

Открытию ВИЧ предшествовали работы Р. Галло и его со­трудников, которые на полученной ими культуре клеток Т-лимфоцитов выделили два Т-лимфотропных ретровируса человека. Один из них — HTLV-I (англ., humen T-lymphotropic virus type I), обнаруженный в конце 70-х годов, является возбудителем редкого, но злокачественного Т-лейкоза человека. Второй вирус, обозначенный HTLV-II, также вызывает Т-клеточные лейкозы и лимфомы.

После регистрации в США в начале 80-х годов первых боль­ных с синдромом приобретенного иммунодефицита (СПИД), тогда еще никому не известного заболевания, Р. Галло высказал предположение, что его возбудителем является ретровирус, близкий к HTLV-I. Хотя это предположение через несколько лет было опровергнуто, оно сыграло большую роль в открытии истинного возбудителя СПИДа. В 1983 г. из кусочка ткани увеличенного лимфатического узла гомосексуалиста Люк Монтенье с группой сотрудников Пастеровского института в Париже выделили в культуре Т-хелперов ретровирус. Дальнейшие иссле­дования показали, что этот вирус отличался от HTLV-I и HTLV-II — он репродуцировался только в клетках Т-хелперов и эффекторов, обозначаемых Т4, и не репродуцировался в клет­ках Т-супрессоров и киллеров, обозначаемых Т8.

Таким образом, введение в вирусологическую практику куль­тур лимфоцитов Т4 и Т8 позволило выделить три облигатно-лимфотропных вируса, два из которых вызывали пролиферацию Т-лимфоцитов, выражающуюся в разных формах лейкоза человека, а один — возбудитель СПИДа — вызывал их деструк­цию. Последний получил название вируса иммунодефицита человека — ВИЧ.

Структура и химический состав. Вирионы ВИЧ имеют сфери­ческую форму 100—120 нм в диаметре и по своей структуре близки к другим лентивирусам. Внешняя оболочка вирионов образована двойным липидным слоем с расположенными на нем гликопротеиновыми «шипами» (рис. 21.4). Каждый «шип» состо­ит из двух субъединиц (gp41 и gp! 20). Первый пронизывает липидный слой, второй находится снаружи. Липидный слой происходит из внешней мембраны клетки хозяина. Образование обоих белков (gp41 и gp! 20) с нековалентной связью между ними происходит при разрезании белка внешней оболочки ВИЧ (gp! 60). Под внешней оболочкой расположена сердцевина вириона цилиндрической или конусовидной формы, образован­ная белками (р! 8 и р24). В сердцевине заключены РНК, обрат­ная транскриптаза и внутренние белки (р7 и р9).

В отличие от других ретровирусов ВИЧ имеет сложный геном за счет наличия системы регуляторных генов. Без знания основных механизмов их функционирования невозможно понять уникальные свойства этого вируса, проявляющиеся в разнооб­разных патологических изменениях, которые он вызывает в ор­ганизме человека.

В геноме ВИЧ содержится 9 генов. Три структурных гена gag, pol и env кодируют компоненты вирусных частиц: ген gag — внутренние белки вириона, входящие в состав сердцевины и капсида; ген pol — обратную транскриптазу; ген env — типо-специфические белки, находящиеся в составе внешней оболочки (гликопротеины gp41 и gp! 20). Большая молекулярная масса gp! 20 обусловлена высокой степенью их гликозирования, что является одной из причин антигенной вариабельности данного вируса.

В отличие от всех известных ретровирусов ВИЧ имеет слож­ную систему регуляции структурных генов (рис. 21.5). Среди них наибольшее внимание привлекают гены tat и rev. Продукт гена tat увеличивает скорость транскрипции как структурных, так и регуляторных вирусных белков в десятки раз. Продукт гена rev также является регулятором транскрипции. Однако он контролирует транскрипцию либо регуляторных, либо структур­ных генов. В результате такого переключения транскрипции вместо регуляторных белков синтезируются капсидные белки, что увеличивает скорость репродукции вируса. Тем самым при участии гена rev может определиться переход от латентной инфекции к ее активной клинической манифестации. Ген nef контролирует прекращение репродукции ВИЧ и его переход в латентное состояние, а ген vif кодирует небольшой белок, усиливающий способность вириона отпочковываться от одной клетки и заражать другую. Однако эта ситуация еще более усложнится, когда окончательно будет выяснен механизм регу­ляции репликации провирусной ДНК продуктами генов vpr и vpu. Вместе с тем на обоих концах ДНК провируса, интегри­рованного в клеточный геном, имеются специфические марке­ры— длинные концевые повторы (ДКП), состоящие из идентич­ных нуклеотидов, которые участвуют в регуляции экспрессии рассмотренных генов. При этом существует определенный алгоритм включения генов в процессе вирусной репродукции в раз­ные фазы заболевания.

Антигены. Антигенными свойствами обладают белки серд­цевины и оболочечные гликопротеины (gp! 60). Последние характеризуются высоким уровнем антигенной изменчивости, который определяется высокой скоростью замен нуклеотидов в генах env и gag, в сотни раз превышающей соответствующий показатель для других вирусов. При генетическом анализе многочисленных изолятов ВИЧ не оказалось ни одного с полным совпадением нуклеотидных последовательностей. Более глубокие различия отмечены у штаммов ВИЧ, выделенных от больных, проживающих в различных географических зонах (географиче­ские варианты).

Вместе с тем у вариантов ВИЧ имеются общие антигенные эпитопы. Интенсивная антигенная изменчивость ВИЧ происходит в организме больных в ходе инфекции и вирусоносителей. Она дает возможность вирусу «скрыться» от специфических антител и факторов клеточного иммунитета, что приводит к хронизации инфекции.

Повышенная антигенная изменчивость ВИЧ существенно ограничивает возможности создания вакцины для профилактики СПИДа.

В настоящее время известны два типа возбудителя — ВИЧ-1 •и ВИЧ-2, которые различаются между собой по антигенным, патогенным и другим свойствам. Первоначально был выделен ВИЧ-1, который является основным возбудителем СПИДа в Европе и Америке, а через несколько лет в Сенегале — ВИЧ-2, который распространен в основном в Западной и Центральной Африке, хотя отдельные случаи заболевания встречаются и в Европе.

В США с успехом применяется живая аденовирусная вакцина для иммунизации военнослужащих.

Лабораторная диагностика. Для выявления вирусного антиге­на в эпителиальных клетках слизистой оболочки дыхательных путей применяют иммунофлюоресцентный и иммуноферментный методы, а в испражнениях — иммуноэлектронную микроскопию. Выделение аденовирусов проводится путем заражения чувстви­тельных культур клеток с последующей идентификацией вируса в РНК, а затем в реакции нейтрализации и РТГА.

Серодиагностика проводится в тех же реакциях с парными сыворотками больных людей.


 


Билет 38

1. 1

Питательные среды

Микробиологическое исследование — это выделение чистых культур микроорганизмов, культивирование и изучение их свойств. Чистыми называются культуры, состоящие из микроорганизмов одного вида. Они нужны при диагностике инфекционных болезней, для определения видовой и типовой принадлежности микробов, в исследовательской работе, для получения продуктов жизнедеятельности микробов (токсинов, антибиотиков, вакцин и т. п.).

Для культивирования микроорганизмов (выращивание в искусственных условиях in vitro) необходимы особые субстраты — питательные среды. На средах микроорганизмы осуществляют все жизненные процессы (питаются, дышат, размножаются и т. д.), поэтому их еще называют «средами для культивирования».

Питательные среды

Питательные среды являются основой микробиологической работы, и их качество нередко определяет результаты всего исследования. Среды должны создавать оптимальные (наилучшие) условия для жизнедеятельности микробов.

Требования, предъявляемые к средам

Среды должны соответствовать следующим условиям:

1) быть питательными, т. е. содержать в легко усвояемом виде все вещества, необходимые для удовлетворения пищевых и энергетических потребностей. Ими являются источники органогенов и минеральных (неорганических) веществ, включая микроэлементы. Минеральные вещества не только входят в структуру клетки и активизируют ферменты, но и определяют физико-химические свойства сред (осмотическое давление, рН и др.). При культивировании ряда микроорганизмов в среды вносят факторы роста — витамины, некоторые аминокислоты, которые клетка не может синтезировать;

Внимание! Микроорганизмы, как все живые существа, нуждаются в большом количестве воды.

2) иметь оптимальную концентрацию водородных ионов — рН, так как только при оптимальной реакции среды, влияющей на проницаемость оболочки, микроорганизмы могут усваивать питательные вещества.

Для большинства патогенных бактерий оптимальна слабощелочная среда (рН 7, 2—7, 4). Исключение составляют холерный вибрион — его оптимум находится в щелочной зоне

(рН 8, 5—9, 0) и возбудитель туберкулеза, нуждающийся в слабокислой реакции (рН 6, 2—6, 8).

Чтобы во время роста микроорганизмов кислые или щелочные продукты их жизнедеятельности не изменили рН, среды должны обладать буферностью, т. е. содержать вещества, нейтрализующие продукты обмена;

3) быть изотоничными для микробной клетки, т. е. осмотическое давление в среде должно быть таким же, как внутри клетки. Для большинства микроорганизмов оптимальна среда, соответствующая 0, 5% раствору натрия хлорида;

4) быть стерильными, так как посторонние микробы препятствуют росту изучаемого микроба, определению его свойств и изменяют свойства среды (состав, рН и др.);

5) плотные среды должны быть влажными и иметь оптимальную для микроорганизмов консистенцию;

6) обладать определенным окислительно-восстановительным потенциалом, т. е. соотношением веществ, отдающих и принимающих электроны, выражаемым индексом RH2. Этот потенциал показывает насыщение среды кислородом. Для одних микроорганизмов нужен высокий потенциал, для других — низкий. Например, анаэробы размножаются при RH2 не выше 5, а аэробы — при RH2 не ниже 10. Окислительно-восстановительный потенциал большинства сред удовлетворяет требованиям к нему аэробов и факультативных анаэробов;

7) быть по возможности унифицированным, т. е. содержать постоянные количества отдельных ингредиентов. Так, среды для культивирования большинства патогенных бактерий должны содержать 0, 8—1, 2 гл амин-ного азота NH2, т. е. суммарного азота аминогрупп аминокислот и низших полипептидов; 2, 5—3, 0 гл общего азота N; 0, 5% хлоридов в пересчете на натрия хлорид; 1% пептона.

Желательно, чтобы среды были прозрачными — удобнее следить за ростом культур, легче заметить загрязнение среды посторонними микроорганизмами.

Классификация сред

Потребность в питательных веществах и свойствах среды у разных видов микроорганизмов неодинакова. Это исключает возможность создания универсальной среды. Кроме того, на выбор той или иной среды влияют цели исследования.

В настоящее время предложено огромное количество сред, в основу классификации которых положены следующие признаки.

1. Исходные компоненты. По исходным компонентам различают натуральные и синтетические среды. Натуральные среды готовят из продуктов животного и

растительного происхождения. В настоящее время разработаны среды, в которых ценные пищевые продукты (мясо и др.) заменены непищевыми: костной и рыбной мукой, кормовыми дрожжами, сгустками крови и др. Несмотря на то, что состав питательных сред из натуральных продуктов очень сложен и меняется в зависимости от исходного сырья, эти среды нашли широкое применение.

Синтетические среды готовят из определенных химически чистых органических и неорганических соединений, взятых в точно указанных концентрациях и растворенных в дважды дистиллированной воде. Важное преимущество этих сред в том, что состав их постоянен (известно, сколько и какие вещества в них входят), поэтому эти среды легко воспроизводимы.

2. Консистенция (степень плотности). Среды бывают жидкие, плотные и полужидкие. Плотные и полужидкие среды готовят из жидких веществ, к которым для получения среды нужной консистенции прибавляют обычно агар-агар или желатин.

Агар-агар — полисахарид, получаемый из определенных

сортов морских водорослей. Он не является для микроорганизмов питательным веществом и служит только для уплотнения среды. В воде агар плавится при 80— 100°С, застывает при 40—45°С.

Желатин — белок животного происхождения. При 25— 30°С желатиновые среды плавятся, поэтому культуры на них обычно выращивают при комнатной температуре. Плотность этих сред при рН ниже 6, 0 и выше 7, 0 уменьшается, и они плохо застывают. Некоторые микроорганизмы используют желатин как питательное вещество — при их росте среда разжижается.

Кроме того, в качестве плотных сред применяют свернутую сыворотку крови, свернутые яйца, картофель, среды с селикагелем.

3. Состав. Среды делят на простые и сложные. К первым относят мясопептонный бульон (МПБ), мясопептонный агар (МПА), бульон и агар Хоттингера, питательный желатин и пептонную воду. Сложные среды готовят, прибавляя к простым средам кровь, сыворотку, углеводы и другие вещества, необходимые для размножения того или иного микроорганизма.

4. Назначение: а) основные (общеупотребительные) среды служат для культивирования большинства патогенных микробов. Это вышеупомянутые МП А, МПБ, бульон и агар Хоттингера, пептонная вода;

б) специальные среды служат для выделения и выращивания микроорганизмов, не растущих на простых средах. Например, для культивирования стрептококка к средам прибавляют сахар, для пневмо- и менингококков — сыворотку крови, для возбудителя коклюша — кровь;

в) элективные (избирательные) среды служат для выделения определенного вида микробов, росту которых они благоприятствуют, задерживая или подавляя рост сопутствующих микроорганизмов. Так, соли желчных кислот, подавляя рост кишечной палочки, делают среду

элективной для возбудителя брюшного тифа. Среды становятся элективными при добавлении к ним определенных антибиотиков, солей, изменении рН.

Жидкие элективные среды называют средами накопления. Примером такой среды служит пептонная вода с рН 8, 0. При таком рН на ней активно размножается холерный вибрион, а другие микроорганизмы не растут;

г) дифференциально-диагностические среды позволяют отличить (дифференцировать) один вид микробов от другого по ферментативной активности, например среды Гисса с углеводами и индикатором. При росте микроорганизмов, расщепляющих углеводы, изменяется цвет среды;

д) консервирующие среды предназначены для первичного посева и транспортировки исследуемого материала; в них предотвращается отмирание патогенных микроорганизмов и подавляется развитие сапрофитов. Пример такой среды — глицериновая смесь, используемая для сбора испражнений при исследованиях, проводимых с целью обнаружения ряда кишечных бактерий.

Гепатит (А, Е)

Возбудитель гепатита A (HAV—Hepatitis A virus) относится к семейству пикорнавирусов, роду энтеровирусов. Вызыва­ет наиболее распространенный вирусный гепатит, который имеет несколько исторических названий (инфекционный, эпидемический гепатит, болезнь Боткина и др.). В нашей стране около 70 % случаев вирусного гепатита вызывается вирусом гепатита А. Вирус впервые был обнаружен С. Фейстоуном в 1979 г. в фекалиях боль­ных методом иммунной электронной микроскопии.

Структура и химический состав. По морфологии и структуре вирус гепатита А близок ко всем энтеровирусам (см. 21.1.1.1). В РНК вируса гепатита А обнаружены нуклеотидные после­довательности, общие с другими энтеровирусами.

Вирус гепатита А имеет один вирусспецифический антиген белковой природы. HAV отличается от энтеровирусов более высокой устойчивостью к действию физических и химических факторов. Он частично инактивируется при нагревании до 60°С в течение 1 ч, при 100 °С разрушается в течение 5 мин, чувст­вителен к действию.формалина и УФ-излучению.

Культивирование и репродукция. Вирус гепатита обладает пониженной способностью к репродукции в культурах клеток. Однако его удалось адаптировать к перевиваемым линиям кле­ток человека и обезьян. Репродукция вируса в культуре кле­ток не сопровождается ЦПД. HAV почти не выявляется в куль-туральной жидкости, поскольку ассоциирован с клетками, в ци­топлазме которых он репродуцируется:

Патогенез заболеваний человека и иммунитет. HAV так же, как и другие энтеровирусы, с пищей попадает в желудочно-кишечный тракт, где репродуцируется в эпителиальных клетках слизистой оболочки тонкой кишки и регионарных лимфатичес­ких узлах. Затем возбудитель проникает в кровь, в которой он обнаруживается в конце инкубационного периода и в первые дни заболевания.

В отличие от других энтеровирусов основной мишенью по­ражающего действия HAV являются клетки печени, в цитоплазме которых происходит его репродукция. Не исключена возможность поражения гепатоцитов NK-клетками (натуральными киллера­ми), которые в активированном состоянии могут взаимодейство­вать с ними, вызывая их разрушение. Активация NK-клеток происходит и в результате их взаимодействия с интерфероном, индуцированным вирусом. Поражение гепатоцитов сопровожда­ется развитием желтухи и повышением уровня трансаминаз в сыворотке крови. Далее возбудитель с желчью попадает в про­свет кишечника и выделяется с фекалиями, в которых отме­чается высокая концентрация вируса в конце инкубационного периода и в первые дни заболевания (до развития желтухи). Гепатит А обычно заканчивается полным выздоровлением, ле­тальные исходы редки.

После перенесения клинически выраженной или бессимптом­ной инфекции формируется пожизненный гуморальный иммуни­тет, связанный с синтезом противовирусных антител. Иммуно­глобулины класса IgM исчезают из сыворотки через 3—4 мес после начала заболевания, в то время как IgG сохраняются в течение многих лет. Установлен также синтез секреторных им­муноглобулинов SlgA.

Эпидемиология. Источником инфекции являются больные люди, в том числе и с распространенной бессимптомной фор­мой инфекции. Вирус гепатита А широко циркулирует среди на­селения. На Европейском континенте сывороточные антитела против HAV содержатся у 80 % взрослого населения, достигше­го 40-летнего возраста. В странах с низким социально-экономи­ческим уровнем инфицирование происходит уже в первые годы жизни. Гепатитом А часто болеют дети.

Больной наиболее опасен для окружающих в конце инкуба­ционного периода и в первые дни разгара болезни (до появле­ния желтухи) в связи с максимальным выделением вируса с фекалиями. Основной механизм передачи — фекально-ораль-ный — через пищу, воду, предметы обихода, детские игрушки.

Лабораторная диагностика проводится путем выявления ви­руса в фекалиях больного методом иммуноэлектронной микро-скопии. Вирусный антиген в фекалиях может Оыть также обна^ ружен с помощью иммуноферментного и радиоиммунного ана­лиза. Наиболее широко применяется серодиагностика гепатита — выявление теми же методами в парных сыворотках крови анти­тел класса IgM, которые достигают высокого титра в течение пер­вых 3—6 нед.

Специфическая профилактика. Вакцинопрофилактика гепа­тита А находится в стадии разработки. Испытываются инактивированная и живая культуральные вакцины, производство которых затруднено в связи со слабой репродукцией вируса в культурах клеток. Наиболее перспективной является разработка генно-инженерной вакцины. Для пассивной иммунопрофилактики гепатита А используют иммуноглобулин, полученный из смеси донорских сывороток.

Возбудитель гепатита Е имеет некоторое сходство с кали-цивирусами. Размер вирусной частицы 32—34 нм. Генетичес­кий материал представлен РНК. Передача вируса гепатита Е, так же как HAV, происходит энтеральным путем. Серодиагно­стика проводится путем определения антител к антигену Е-вируса.



Билет 39


Поделиться:



Популярное:

  1. I. Использование средств индивидуальной и коллективной защиты в ЧС.
  2. IV. Вредные факторы при работе с компьютером
  3. IV. Основные способы и средства защиты населения в чрезвычайных ситуациях.
  4. IV. Порядок защиты выпускной квалификационной работы
  5. V. ОСНОВНЫЕ ФАКТОРЫ РИСКА ВОЗНИКНОВЕНИЯ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ ПРИРОДНОГО И ТЕХНОГЕННОГО ХАРАКТЕРА.
  6. Абиотические факторы среды обитания
  7. Агрофизические факторы плодородия почвы
  8. Антропогенные факторы среды обитания
  9. Аппаратура управления и защиты
  10. БИЛЕТ 13. Факторы ценовой эластичности спроса. Геометрическая интерпретация коэффициентов ценовой эластичности спроса
  11. БИЛЕТ 15. Ценовая эластичность предложения. Факторы ценовой эластичности предложения. Геометрическая интерпретация коэффициента ценовой эластичности предложения
  12. В каком из следующих перечней представлены только факторы производства?


Последнее изменение этой страницы: 2016-04-11; Просмотров: 1112; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.037 с.)
Главная | Случайная страница | Обратная связь