Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Число нуклонов в ядре атома элемента равно относительной атомной массе элемента, округленной до целого числа.



Примеры:

Водород Ar = 1, 001; 1 нуклон

Углерод Ar = 12, 011; 12 нуклонов.

 

2.1.3.Нуклиды, изотопы, массовое число

Большинство элементов, содержащихся в природе, состоит из нескольких видов атомов, отличающихся значениями относительной атомной массы.

Пример. Хлор в природе встречается как смесь двух видов атомов, один из которых содержит 18, а другой – 20 нейтронов в ядре.

Каждый вид атомов (вид ядер) называется нуклидом. Нуклид – это вид атомов и ядер, отвечающий определенным числам протонов и нейтронов.

Нуклиды, принадлежащие одному элементу и однозначно определяемые числом протонов, но различающиеся по числу нейтронов, называются изотопными нуклидами, или просто изотопами.

Изотопы элемента – это нуклиды, обладающие равным зарядом ядра (числом протонов). Изотопы элемента различаются только числом нейтронов и, следовательно, общим числом нуклонов.

Пример. Ядра двух природных изотопов хлора содержат по 17 протонов, но 18 и 20 нейтронов, т.е. 35 и 37 нуклонов соответственно.

Для нуклидов точные значения относительных атомных масс всегда близки к целочисленным значениям, поэтому массы нуклидов можно сравнивать по этим значениям, называемым массовыми числами.

Массовое число нуклида равно числу содержащихся в нем нуклонов (сумме протонов и нейтронов).

Для обозначения конкретного нуклида применяется специальная символика. Слева от символа химического элемента верхним индексом указывается массовое число, а нижним индексом – заряд ядра (порядковый номер элемента). Например, изотоп хлора-18 записывается как .

Таким образом:

Массовое число = Число нуклонов в ядре.

Порядковый номер = Число протонов в ядре или число электронов в оболочке атома.

Разность между массовым числом и порядковым номером = Число нейтронов в ядре.

2.1.4. Строение электронной оболочки атома. Энергетические уровни

 

Строение электронной оболочки атома определяется различным запасом энергии E отдельных электронов в атоме. В соответствии с моделью атома Бора электроны могут занимать в атоме положения, которым отвечают точно определенные (квантованные) энергетические состояния.

Число электронов, которые могут находиться на отдельном энергетическом уровне, определяется формулой 2n² , где n – номер уровня, который обозначается арабскими цифрами 1-7; для обозначения энергетических уровней используются также буквы от K до Q. Максимальное заполнение первых четырех энергетических уровней в соответствии с формулой 2n² составляет: для первого уровня К – 2 электрона, для второго L – 8, для третьего M – 18 и для четвертого уровня N – 32 электрона.

2.2. КВАНТОВО - МЕХАНИЧЕСКОЕ ОБЪЯСНЕНИЕ СТРОЕНИЯ АТОМА

 

2.2.1. Орбитальная модель атома

Современные квантово-механические представления о строении электронной оболочки атома исходят из того, что движение электрона в атоме нельзя описать определенной траекторией. Можно рассматривать лишь некоторый объем пространства, в котором находится электрон. Поскольку электрон обладает одновременно свойствами частицы и волны, то подходом к объяснению строения электронной оболочки может быть как корпускулярная теория, так и волновая теория; обе они приводят к одинаковому наглядному представлению, сформулированному как орбитальная модель атома.

1. Обоснование орбитальной модели атома, исходящее из корпускулярного характера электрона, состоит в следующем. Как следует из рис. 2, вероятность пребывания электрона в атомном ядре равна нулю, она незначительна вблизи ядра, но быстро возрастает при удалении от ядра. На некотором расстоянии вероятность достигает максимума, а затем медленно уменьшается, ассимптотически приближаясь к нулю на расстоянии, стремящемся к бесконечности. Таким образом, невозможно ограничить то пространство, в котором может находиться электрон, т.е. нельзя (без дополнительных условий) указать размеры атома. Исходя из корпускулярного характера электрона можно говорить о 90 %-ой вероятности его пребывания в ограниченном объеме пространства, которое называется атомная орбиталь.

 

 

Рис. 2. Зависимость электронной плотности (или вероятности пребывания электрона на расстоянии r ядро-электрон) в атоме от расстояния от ядра

 

2. Обоснование орбитальной модели атома, исходящее из волнового характера электрона, состоит в следующем. Электрон заполняет пространство вокруг атомного ядра в форме стоячей волны, которую наглядно можно представить как электронное облако. Плотность электронного облака, понимаемого как облако электрического заряда электрона − электронная плотность – окажется различной и зависящей от расстояния ядро-электрон (рис.1). При ограничении электронной плотности до значения ~ 90 % получается та же орбитальная модель атома.

Атомная орбиталь – это геометрический образ, отвечающий объему пространства вокруг атомного ядра, который соответствует 90 %-ой вероятности нахождения в этом объеме электрона (как частицы) и одновременно 90 %-ой плотности заряда электрона (как волны).

Модель атомной орбитали (электронного облака) очень удобна для наглядного описания распределения электронной плотности в пространстве. При этом s-орбиталь имеет сферическую форму, р-орбиталь – форму гантели, d-орбиталь – четырехлепесткового цветка или удвоенной гантели, f-орбиталь – еще более сложную форму (рис. 3).

Рис. 3. Формы s-, p-, d- и f -орбиталей

Если в атомной орбитали находится только один электрон (как в атоме водорода), то говорят об однократно занятой или полузаполненной, полузаселенной атомной орбитали. Если же в атомной орбитали находятся два электрона (как в атоме гелия), то говорят о двукратно занятой или полностью заполненной, полностью заселенной атомной орбитали. Полузаселенные АО играют важнейшую роль при формировании химических связей.

В соответствии с квантово-механическим описанием состояния электрона в атоме каждый электрон является индивидуальной частицей. Такие его свойства, как масса и заряд не выявляют различий между электронами, особенно между теми электронами, которые находятся на одной атомной орбитали (как в атоме гелия). Собственной характеристикой каждого электрона в атоме является спин.

Два электрона, находящиеся в одной атомной орбитали, различаются по спину.

Спин – квантово-механическое свойство электрона, которое невозможно точно объяснить с помощью традиционных представлений на основе механического поведения макрочастиц. Без учета волновых свойств электрона спин можно интерпретировать путем сравнения электрона с шаром, вращающимся вокруг выбранной оси. Спин характеризует направление вращения и, следовательно, при двух возможных направлениях механического вращения должно существовать два разных спина электрона.

Спин – неотъемлемая характеристика электрона в атоме; два электрона на одной атомной орбитали обладают антипараллельными спинами.

Атомную орбиталь удобно изображать в виде квадрата, называемого квантовой ячейкой, а каждый электрон − вертикальной стрелкой, обозначающей один из двух возможных спинов электрона. Квантовая ячейка с одной стрелкой означает атомную орбиталь с одним электроном, т.е. полузаселенную орбиталь, с двумя стрелками − атомную орбиталь с двумя электронами, т.е. полностью заселенную орбиталь, без стрелок – вакантную орбиталь, т. е. без электронов.

2.2.2. Орбитали с s, p, d - и f -электронами

(атомные s, p, d - и f -орбитали)

Атомную орбиталь, имеющую шаровую симметрию (рис. 3), принято обозначать как s-орбиталь (s-АО), а находящиеся в ней электроны – как s-электроны.

Радиус атомной s-орбитали возрастает при увеличении номера энергетического уровня; 1s-АО расположена внутри 2s-АО, последняя – внутри 3s-АО и т.д. с центром, отвечающим атомному ядру. В целом строение электронной оболочки атома в орбитальной модели представляется слоистым. Каждый энергетический уровень, содержащий электроны, геометрически рассматривается как электронный слой.

Для сокращенного обозначения электрона, занимающего атомную s-орбиталь, используется обозначение самой s-АО с верхним цифровым индексом, указывающим число электронов. Например, 1s − обозначение единственного электрона атома водорода.

Номер энергетического уровня отвечает главному квантовому числу, а вид орбитали − орбитальному квантовому числу.

2s Li=1s 2s , Be=1s 2s

1s H=1s , He

Электронная формула в сочетании с энергетической диаграммой электронной оболочки атома (рис. 3) отражают его электронную конфигурацию.

Атомную орбиталь, имеющую вращательную (осевую) симметрию принято обозначать как p-орбиталь (p-АО) ; находящиеся в ней электроны – это p-электроны.

Каждая атомная p-орбиталь может принять (при максимальном заполнении) два электрона, подобно любой другой АО. Эти электроны сообща занимают обе половины p-орбитали. На каждом атомном энергетическом уровне (кроме первого) имеется три атомных орбитали, которым отвечает максимальное заселение шестью электронами.

Все три p-АО одного энергетического уровня отличаются друг от друга пространственным расположением; их собственные оси, проходящие через обе половины орбитали и перпендикулярные ее узловой плоскости, образуют систему декартовых координат (обозначения собственных осей x, y, z). Поэтому на каждом энергетическом уровне имеется набор трех атомных p-орбиталей: px-, py- и pz-АО. Буквы x, y, z соответствуют магнитному квантовому числу, позволяющему судить о влиянии внешнего магнитного поля на электронную оболочку атома.

Атомные s-орбитали имеются на всех энергетических уровнях, атомные p-орбитали − на всех уровнях, кроме первого. На третьем и последующих энергетических уровнях к одной s-АО и трем p-АО присоединяется пять атомных орбиталей, получивших название d-орбиталей (рис. 4), а на четвертом и последующих уровнях − еще семь атомных орбиталей, называемых f-орбиталями.

Квантово-механические расчеты показывают, что в многоэлектронных атомах энергия электронов одного уровня не одинакова; электроны заполняют атомные орбитали разных видов и имеют разную энергию.

Энергетический уровень характеризуется главным квантовым числом n. Для всех известных элементов значения n изменяются от 1 до 7. Электроны в многоэлектронном атоме, находящемся в основном (невозбужденном) состоянии, занимают энергетические уровни от первого до седьмого.

Энергетический подуровень характеризуется орбитальным квантовым числом l. Для каждого уровня (n = const) квантовое число l принимает все целочисленные значения от 0 до (n-1), например, при n=3 значениями l будут 0, 1 и 2. Орбитальное квантовое число определяет геометрическую форму (симметрию) орбиталей s-, p-, d-, f-подуровня. Очевидно, что во всех случаях n> l; при n=3 максимальное значение l равно 2.

Существующие подуровни для первых четырех энергетических уровней, числа атомных орбиталей и электронов в них приведены в таблице 1.

Закономерность заполнения электронных оболочек атомов определяется принципом запрета, установленным в 1925 г. швейцарским физиком Паули.

Принцип Паули: в атоме не могут находиться два электрона в тождественных состояниях.

Различие электронов, занимающих разные атомные орбитали одного подуровня (n, l = const), кроме s-подуровня, характеризуется магнитным квантовым числом m . Это число называется магнитным, поскольку оно характеризует поведение электронов во внешнем магнитном поле. Если значение l определяет геометрическую форму атомных орбиталей подуровня, то значение квантового числа m устанавливает взаимное пространственное расположение этих орбиталей.

Таблица 1


Поделиться:



Популярное:

  1. БИОГЕОЦЕНОЗ - ЭЛЕМЕНТАРНАЯ ЕДИНИЦА БИОГЕОЦЕНОТИЧЕСКОГО УРОВНЯ ОРГАНИЗАЦИИ ЖИЗНИ
  2. В каком случае равновесная цена должна увеличиваться при одновременном уменьшении равновесного количества?
  3. В процессе измерения не следует прикасаться к соединительным проводам, клеммам и элементам испытуемой цепи для исключения протекания тока через тело работающего с прибором.
  4. В случае равного количества очков, набранных командами двух стран, имеющих по одинаковому количеству первых мест, та команда, у которой больше вторых мест имеет преимущество при распределении и т.д.
  5. В. ПРАКТИКА ПРИВЕДЕНИЯ В РАВНОВЕСИЕ И ГАРМОНИЮ ВСЕЙ СИСТЕМЫ - ШАГ ЗА ШАГОМ
  6. Влияние факторов рыночного равновесия на изменение экономического риска.
  7. Возвращение к равновесию с природой
  8. Возможные задержки и неисправности автомата при стрельбе, способы их устранения
  9. Вопрос 3. Кейнсианская модель экономического равновесия
  10. ВОПРОС: МЕТОДИКА ОБУЧЕНИЯ МАТЕМАТИКИ ДОЧИСЛОВОЙ ПЕРИОД
  11. Выбор выключателей, разъединителей, трансформаторов тока и напряжения, расчёт конструкции сборных шин и связей между элементами РУ и оборудованием на напряжении 110 кВ
  12. Выполнение элемента «Бобышка-Вытянуть 3»


Последнее изменение этой страницы: 2016-04-11; Просмотров: 2491; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь