Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


РАСЧЕТ СТАТИЧЕСКИ ОПРЕДЕЛИМЫХ РАМ



Рекомендуемая литература

Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. М.: Высш. шк., 1995. Гл. 2 (§ 2.6), гл. 8 (§ 8.9).

Дарков А. В., Шпиро Г. С. Сопротивление материалов. М.: Высш. шк., 1989. Гл. 11 (§ 11.4, 11.5).

Основные определения

Статически определимая рама – конструкция, состоящая из нескольких изгибаемых стержней, закрепленных так, что опорные реакции и внутренние усилия можно найти с помощью уравнений статики. Чаще всего стержни рамы соединены между собой жестким образом, так, что в процессе деформации угол между стержнями не меняется. Мы будем рассматривать только плоские рамы, стержни которых расположены под углом 90°. Вертикальные стержни рамы принято называть стойками, горизонтальные – ригелями. В стержнях плоских рам возникают три внутренних усилия: продольная и поперечная силы и изгибающий момент.

Внутренние усилия в рамах определяются методом сечений, и порядок их нахождения тот же, что и для балок. Напомним, что согласно методу сечений:

·* продольная сила N равна сумме проекций всех сил, действующих с одной стороны от сечения, на ось стержня;

·* поперечная сила Q равна сумме проекций всех сил, действующих с одной стороны от сечения, на ось, перпендикулярную оси стержня;

·* изгибающий момент M равен сумме моментов всех сил, действующих с одной стороны от сечения, относительно оси, проходящей через центр тяжести рассматриваемого сечения.

Правила знаков для продольной и поперечной сил те же, что и раньше: растягивающая продольная сила положительна, поперечная сила положительна, если она обходит сечение по ходу часовой стрелки. Правило знаков для изгибающего момента в рамах следующее: момент считается положительным, если он изгибает стержень рамы выпуклостью вовнутрь[10]. На эпюрах N и Q положительные значения принято откладывать снаружи, на эпюре М – внутри – со стороны растянутых волокон.

От действия трех внутренних усилий в стержнях рамы возникают напряжения: нормальные и касательные. Нормальные напряжения определяются как сумма напряжений от продольной силы ( ) и от изгибающего момента по формуле (4.1). Касательные напряжения находят по формуле Журавского (4.2).

Перемещения точек оси рамы определяются, как правило, методом Максвелла – Мора по формуле (4.21). Заметим, что произвольная точка оси рамы в отличие от точки оси балки может перемещаться не только по вертикали, но и по горизонтали. Будем обозначать линейные перемещения точек оси рамы буквой d, отмечая направление перемещения индексом сверху: dверти dгор. Углы поворота сечений рамы, как и балок, обозначаем буквой j.

Примеры решения задач

Определение внутренних усилий в рамах

(задачи № 21, 22)

Условие задачи

Рассмотрим раму, показанную на рис. 4.26, и определим в ней внутренние усилия, то есть построим эпюры N, Q и М.

Решение

Найдем три опорные реакции, используя три уравнения статики. Желательно составлять такие уравнения, чтобы в каждое из них входила бы только одна неизвестная реакция. В данном примере это такие уравнения (предполагаемые направления реакций показаны на рис. 4.27, а):

  Рис. 4.26. Схема рамы с нагрузками

 

; ; кН;

проекций сил на вертикальную ось равна 0; ; кН;

; ; кН.

Для проверки используем уравнение " сумма проекций сил на горизонталь- ную ось равна нулю":

.

Рис. 4.27. Определение внутренних усилий в раме: а – схема рамы с нагрузками; б, в, г – эпюры внутренних усилий  

Находим внутренние усилия, используя метод сечений. Рама имеет три участка. Заметим, что если для балки границей между участками считалось сечение, где появлялся новый силовой фактор, то для рам границей между участками является также и узел, где соединяются соседние стержни рамы (стойка и ригель). Рассечем стержни рамы на трех участках и выберем начало отсчета х на каждом участке (удобно начало отсчета выбирать в начале участка – рис. 4.27, а). Запишем выражения для продольной, поперечной сил и изгибающего момента на каждом участке, используя вышеприведенные определения этих усилий и правила знаков для них:

участок 1: м;

кН;

;

;

участок 2: м;

кН;

кН;

;

участок 3: м;

кН;

кН;

.

Строим эпюры усилий, используя написанные выражения (рис. 4.27, б, в, г). Значение максимального момента определяем так же, как в балках.

  Рис. 4.28. Проверка равновесия узлов

Проверку правильности построения эпюр в рамах производим, проверяя равновесие узлов. Для этого вырезаем узлы (в рассматриваемой раме их два: D и E) и прикладываем к сечениям, примыкающим к узлам, все внутренние усилия согласно построенным эпюрам. Направление усилий должно соответствовать их знакам. На рис. 4.28 показаны вырезанные из рамы узлы D и E вместе с действующими в сечениях, примыкающих к узлам, внутренними усилиями. Видно, что узлы находятся в равновесии. Из условия равновесия узлов следует, что, если в узле не приложена внешняя пара сил (узел D), то изгибающие моменты в сечениях, примыкающих к узлу, обязательно одинаковы. То есть, зная изгибающий момент в угловой точке для стойки, можно получить графически ординату М в угловой точке для ригеля, проведя циркулем дугу из вершины угла, как из центра. Если в узле действует сосредоточенная пара сил, то значения изгибающих моментов в примыкающих сечениях отличаются на величину этой пары.

4.2.2. Определение перемещений в рамах (задачи № 21, 22)

Условие задачи

Для рамы, показанной на рис. 4.26, найдем вертикальное перемещение точки В и угол поворота сечения А. Жесткость стержней рамы будем считать одинаковой ( ). Перемещения ищем методом Максвелла – Мора, интегрируя формулу Максвелла – Мора аналитически и графически (с помощью правила Верещагина).

Решение

Рис. 4.29. Рама под действием единичной обобщенной силы: а – соответствующей ; б – соответствующей

Будем искать первое обобщенное перемещение – вертикальное перемещение точки В. В соответствии с методом Максвелла – Мора для определения этого перемещения приложим в точке В единичную вертикальную сосредоточенную силу (рис. 4.29, а) и найдем изгибающий момент, вызванный этой нагрузкой (координаты , , должны отсчитываться так же, как при определении момента от заданной нагрузки):

участок 1: м;

;

участок 2: м;

;

участок 3: м;

.

Аналогично для определения второго обобщенного перемещения – угла поворота сечения А – приложим в точке А сосредоточенную пару сил, равную единице (рис. 4.29, б), и определим изгибающий момент от этой пары:

участок 1: м;

;

участок 2: м;

;

участок 3: м;

.

Вариант 1. Аналитическое интегрирование формулы

Максвелла – Мора

Подставим в формулу Максвелла – Мора (4.21) выражения для изгибающих моментов от заданной нагрузки, найденные ранее при определении внутренних усилий в рассматриваемой раме, умножим их на выражения для изгибающих моментов от единичных обобщенных сил на всех трех участках и выполним интегрирование. Тогда, учтя, что , проинтегрируем формулу (4.21):

250 кН·м3;

–63, 3 кН·м2.

В соответствии с правилом знаков метода Максвелла – Мора положительный знак вертикального перемещения говорит о том, что точка В перемещается по направлению обобщенной силы, то есть вверх. Сечение А поворачивается по часовой стрелке (в сторону, противоположную направлению единичной пары сил, так как знак угла поворота отрицательный).

Вариант 2. Интегрирование формулы Максвелла – Мора с помощью правила Верещагина

  Рис. 4.30. Эпюры моментов: а – от заданной нагрузки; б – от единичной обобщенной силы, соответствующей ; в – от единичной обобщенной силы, соответствующей  

Построим эпюры моментов от заданной нагрузки М и от единичных обобщенных сил, соответствующих искомым перемещениям, М1 и М2 (рис. 4.30). Для перемножения эпюр разобьем эпюру М на 4 простые фигуры: два треугольника w1 и w3, сегмент w2 и трапецию w4. Найдем ординаты под центрами тяжести этих фигур на эпюре М1 (h1, h2 и h3 на рис. 4.30, б). Эпюру М на ригеле, имеющую форму трапеции w4 с основаниями разного знака, умножаем на трапецию эпюры М1 по правилу трапеций (4.24). Согласно правилу Верещагина

кН·м3.

Аналогично находим угол поворота сечения А, перемножая эпюры М и М2. Ординаты под центрами тяжести площадей w1, w2 и w3 показаны на рис. 4.30, в (h¢ 1, h¢ 2 и h¢ 3). Для перемножения трапеции w4 на прямоугольник эпюры М2 нет необходимости пользоваться правилом трапеций, так как, где бы ни находился центр тяжести трапеции, значение h¢ 4 известно (ординаты на эпюре М2 на этом участке постоянны).

  Рис. 4.31. Изогнутая ось рамы

кН·м2.

Результаты, полученные по двум вариантам использования формулы Максвелла – Мора, совпадают.

В заключение построим деформированную ось рамы так, чтобы она удовлетворяла эпюре изгибающих моментов и условиям закрепления рамы (рис. 4.31). На рис. 4.31 показаны полученные перемещения – , в соответствии с их направлениями. Точка перегиба (крестик) изогнутой оси ригеля имеет место в сечении, где меняет знак изгибающий момент. Углы рамы в процессе деформации не меняются.[11]

.
4.3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ БАЛОК И РАМ

Рекомендуемая литература

Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. М.: Высш. шк., 1995. Гл. 9 (§ 9.1–9.3).

Гастев В. А. Краткий курс сопротивления материалов. М.: Физматгиз, 1977. Гл. 9.

Дарков А. В., Шпиро Г. С. Сопротивление материалов. М.: Высш. шк., 1989. Гл. 12 (§ 12.1–12.6).

Основные определения

Статически неопределимые балки и рамы – конструкции, в которых уравнений статики недостаточно для определения опорных реакций и внутренних усилий. Число связей, наложенных на статически неопределимую систему, больше того количества связей, которые обеспечивают геометрическую неизменяемость конструкции. Такими связями могут быть как опорные связи, так и стержни самой конструкции. Будем рассматривать балки и простые рамы , то есть такие конструкции, в которых связями, обеспечивающими геометрическую неизменяемость, являются опорные закрепления (опорные связи). Для обеспечения геометрической неизменяемости балки (рамы) в плоскости достаточно трех связей. Каждая связь запрещает какое-то перемещение. Шарнирно-подвижная опора запрещает перемещение по направлению, перпендикулярному плоскости опирания, и является одной связью. Шарнирно-неподвижная опора делает невозможными линейные перемещения по двум взаимно-перпендикулярным направлениям (вертикальному и горизонтальному) и соответствует двум связям, наложенным на конструкцию. Наконец, при наличии жесткого защемления на конце стержня становятся невозможными все перемещения: и вертикальное, и горизонтальное, и угол поворота, поэтому жесткое защемление представляет собой три связи, обеспечивающие геометрическую неизменяемость балки (рамы). Каждая дополнительная связь сверх трех для плоских систем превращает конструкцию в статически неопределимую. Такие дополнительные связи, которые не являются необходимыми для обеспечения геометрической неизменяемости конструкции, называются лишними.

  Рис. 4.32. К расчету статически неопределимой балки: а – заданная статически неопределимая балка; б – основная система и условие совместности деформаций (вариант 1); в – основная система и условие совместности деформаций (вариант 2)

Перед расчетом статически неопределимой конструкции необходимо сначала определить степень статической неопределимости рассматриваемойсистемы. Для балок и простых рам степень статической неопределимости равна числу лишних опорных связей. В каждой связи возникает опорная реакция, поэтому степень статической неопределимости можно найти, сосчитав разность между количеством неизвестных опорных реакций и числом независимых уравнений статики. Например, балка на рис. 4.32, а является один раз статически неопределимой, так как имеет 4 связи и 4 неизвестные опорные реакции, а количество независимых уравнений равновесия – 3. В раме, показанной на рис. 4.34, а, число наложенных связей и опорных реакций в них равно 5, и эта рама является дважды статически неопределимой (в ней две лишние связи). Если в один из стержней балки (рамы) врезан шарнир, то количество связей уменьшается на единицу, так как становится возможным взаимный поворот сечений, примыкающих к шарниру. Появляется дополнительное уравнение для определения опорных реакций: " изгибающий момент в шарнире равен нулю" или можно сказать по-другому: " сумма моментов всех сил, расположенных слева (или справа) от шарнира, равна нулю". Так, балка с врезанным в точке Е шарниром, показанная на рис. 4.33, а, является один раз статически неопределимой: от 5 опорных связей надо вычесть одну связь, связанную с наличием дополнительного шарнира в точке Е. Из четырех оставшихся связей одна является лишней. Можно сосчитать степень статической неопределимости этой балки и иначе: для определения пяти опорных реакций можно составить четыре уравнения статики (дополнительное уравнение " изгибающий момент в шарнире Е равен нулю" ). Разность между числом реакций и количеством уравнений статики равна единице, то есть балка один раз статически неопределима.

  Рис. 4.33. К расчету статически неопределимой балки с шарниром: а – заданная статически неопределимая балка; б – основная система и условие совместности деформаций (вариант 1); в – основная система и условие совместности деформаций (вариант 2)  
Рис. 4.34. К расчету статически неопределимой рамы: а – заданная статически неопределимая рама; б – основная система и условия совместности деформаций (вариант 1); в – основная система и условия совместности деформаций (вариант 2)  

Рассмотрим один из способов расчета статически неопределимых балок и рам, а именно тот, который основан на том же принципе, что и расчет рассмотренных ранее статически неопределимых стержневых конструкций, работающих на растяжение-сжатие, кручение. Согласно этому способу для определения всех неизвестных к необходимым уравнениям равновесия добавляются уравнения совместности деформаций. При определении деформаций в уравнениях совместности деформаций используются физические уравнения (закон Гука). Из решения полученной системы уравнений можно найти все неизвестные реакции и определить внутренние усилия.

Для уменьшения в системе уравнений количества неизвестных, которые определяются в первую очередь, при расчете балок и рам чаще всего используют прием, связанный с выбором основной системы. Основная система – это статически определимая конструкция, полученная из заданной системы путем отбрасывания лишних связей. Реакции в отброшенных связях принято называть лишними неизвестными и обозначать Хi. Решение задачи (раскрытие статической неопределимости) сводится сначала к определению лишних неизвестных. Для их нахождения используются уравнения совместности деформаций – это условия кинематической эквивалентности основной и заданной систем, то есть равенства, приравнивающие нулю деформации по направлению отброшенных в основной системе связей. Количество уравнений совместности деформаций равно степени статической неопределимости. Зная величины лишних неизвестных, можно найти из уравнений равновесия остальные реакции. Обсудим подробно, как выбирать основную систему и записывать уравнения совместности деформаций.

На рис. 4.32, б, в – 4.34, б, в показаны по два варианта основных систем, выбранных для заданных систем, изображенных на рис. 4.32, а – 4.34, а. Балка на рис. 4.32, а один раз статически неопределима, для выбора основной системы необходимо отбросить одну связь. В первом варианте основной системы, изображенном на рис. 4.32, б, отброшена подвижная опора в точке В. Вертикальная реакция в отброшенной связи (лишняя неизвестная) обозначена буквой Х. Условие совместности деформаций для этого варианта основной системы: – это условие, приравнивающее нулю вертикальное перемещение (прогиб) в точке В балки, так как в заданной системе этот прогиб был невозможен. Во втором варианте на рис. 4.32, в жесткое защемление заменено шарнирно-неподвижной опорой. Лишней неизвестной является реактивный момент. Посколькув точке А стал возможным поворот сечения, то условие совместности деформаций полагает этот угол поворота равным нулю: .

Для выбора основной системы в дважды статически неопределимой раме на рис. 4.34, а требуется отбросить две связи. На рис. 4.34, б, в лишние неизвестные обозначеныХ1 и Х2. В основной системе, показанной на рис. 4.34, б, стали возможны по сравнению с заданной системой горизонтальное перемещение в точке В и вертикальное перемещение в точке С , поэтому эти перемещения необходимо приравнять нулю. Это и есть условия совместности деформаций для варианта основной системы, показанной на рис. 4.34, б:

. (4.26)

Аналогично для основной системы, изображенной на рис. 4.34, в, условия совместности деформаций следующие: .

  Рис. 4.35. Взаимный угол поворота сечений около шарнира

Обсудим еще вариант 2 основной системы, показанный на рис. 4.33, в. В точке С сделан разрез стержня и между соседними сечениями вставлен шарнир. Лишней неизвестной в этом случае является изгибающий момент, возникающий в сечении С при отсутствии шарнира. Этот изгибающий момент изображен на рис. 4.33, в в виде двух одинаковых пар сил Х. Чтобы записать уравнение совместности деформаций, надо понять, чем отличается деформация заданной системы от деформации рассматриваемой основной системы. В заданной системе поворот соседних сечений, расположенных бесконечно близко слева и справа от точки С, возможен на один и тот же угол (сечения " склеены" ). После разреза и добавления шарнира соседние сечения могут поворачиваться относительно друг друга на угол (рис. 4.35). Этот взаимный угол поворота соседних сечений в точке С мы и должны положить равным нулю при записи условия совместности деформаций: .

Для определения лишних неизвестных необходимо найти деформации в условиях совместности деформаций любым способом. Как правило, деформации находят методом Максвелла – Мора с использованием правила Верещагина. Удобно искать деформации отдельно от заданной нагрузки и от лишних неизвестных . Например, условия совместности деформаций (4.26) можно записать так:

; (4.27)

. (4.28)

Таким образом, для дважды статически неопределимой системы получаем систему уравнений из двух уравнений с двумя неизвестными, из которых и находим лишние неизвестные. После определения и находим остальные неизвестные реакции и строим окончательные эпюры внутренних усилий N, Q и М, используя уравнения статики.

Окончательную эпюру изгибающих моментов для один раз статически неопределимой системы можно проверить, перемножив ее с эпюрой моментов от единичной силы[12]. Результатом этого перемножения должен быть ноль, то есть

. (4.29)

Условие (4.29) – это условие совместности деформаций, подтверждающее равенство нулю деформаций по направлению лишней неизвестной.

Примеры решения задач


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-11; Просмотров: 10384; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.046 с.)
Главная | Случайная страница | Обратная связь