![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Переходная функция по напряжению
Переходная функция по напряжению наиболее часто используется при анализе четырехполюсников. Если линейную электрическую цепь с нулевыми начальными условиями подключить к источнику постоянного напряжения
где Переходную проводимость
В этой схеме
где Тогда переходная проводимость
Переходная функция по напряжению
Литература
Контрольные вопросы
Ответ:
| |||||
Лекция N 27. Расчет переходных процессов с использованием интеграла Дюамеля. |
Зная реакцию цепи на единичное возмущающее воздействие, т.е. функцию переходной проводимости ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
Соотношение (1) называется интегралом Дюамеля. Следует отметить, что с использованием интеграла Дюамеля можно определять также напряжение. При этом в (1) вместо переходной проводимости
Последовательность расчета с использованием
Исходные данные для расчета:
Полученный результат аналогичен выражению тока, определенному в предыдущей лекции на основе формулы включения.
Метод переменных состояния Уравнения элекромагнитного состояния – это система уравнений, определяющих режим работы (состояние) электрической цепи. Метод переменных состояния основывается на упорядоченном составлении и решении системы дифференциальных уравнений первого порядка, которые разрешены относительно производных, т.е. записаны в виде, наиболее удобном для применения численных методов интегрирования, реализуемых средствами вычислительной техники. Количество переменных состояния, а следовательно, число уравнений состояния равно числу независимых накопителей энергии. К уравнениям состояния выдвигаются два основных требования: -независимость уравнений; -возможность восстановления на основе переменных состояния (переменных, относительно которых записаны уравнения состояния) любых других переменных. Первое требование удовлетворяется специальной методикой составления уравнений состояния, которая будет рассмотрена далее. Для выполнения второго требования в качестве переменных состояния следует принять потокосцепления (токи в ветвях с индуктивными элементами) и заряды (напряжения) на конденсаторах. Действительно, зная закон изменения этих переменных во времени их всегда можно заменить источниками ЭДС и тока с известными параметрами. Остальная цепь оказывается резистивной, а следовательно, всегда рассчитывается при известных параметрах источников. Кроме того, начальные значения этих переменных относятся к независимым, т.е. в общем случае рассчитываются проще других. При расчете методом переменных состояния, кроме самих уравнений состояния, связывающих первые производные Таким образом, полная система уравнений в матричной форме записи имеет вид
Здесь Начальные условия для уравнения (2) задаются вектором начальных значений В качестве примера составления уравнений состояния рассмотрим цепь на рис. 4, а, в которой требуется определить токи По законам Кирхгофа для данной цепи запишем
Поскольку или в матричной форме записи
Матричное уравнение вида (3) вытекает из соотношений (4) и (6):
Вектор начальных значений Непосредственное использование законов Кирхгофа при составлении уравнений состояния для сложных цепей может оказаться затруднительным. В этой связи используют специальную методику упорядоченного составления уравнений состояния.
Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 783; Нарушение авторского права страницы