Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Гамма - излучение и его основные свойства
Гамма-излучения представляют собой электромагнитные колебания очень большой частоты, распространяющиеся в пространстве со скоростью света. Эти излучения испускаются ядром в виде отдельных порций, называемых гамма-квантами или фотонами. Энергия гамма-квантов лежит в пределах от 0, 05 до 5 МэВ. Гамма-излучение с энергией менее 1 МэВ условно называют мягким излучением, а с энергией более 1 МэВ - жестким излучением. Гамма-излучение не является самостоятельным видом излучения. Обычно гамма-излучение сопровождает бета-распад, реже альфа-распад. Выбрасывая альфа- или бета-частицы, ядро освобождается от избытка энергии, но может оставаться еще в возбужденном состоянии. Переход из возбужденного состояния в основное сопровождается излучением гамма-квантов, состав ядра при этом не изменяется. В воздухе гамма-лучи распространяются на большие расстояния, измеряемые десятками и сотнями метров. Проникающая способность гамма-лучей в 50-100 раз больше проникающей способности бета-частиц и в тысячи раз больше проникающей способности альфа-частиц. Ионизация среды при прохождении через нее гамма-лучей производите: только вторичными электронами, которые возникают в результате взаимодействия гамма-квантов с атомами вещества. Ионизирующая способность гамма квантов определяется их энергией. В общем один гамма-квант дает столько и пар ионов, сколько их образует бета- или альфа- частица той же энергии. Однако вследствие меньшей поглощаемости гамма-лучей образуемые ими ионы распределяются на большем расстоянии. Поэтому удельная ионизирующая способность гамма-квантов в сотни раз меньше удельной ионизирующей способности бета-частиц, в тысячи раз меньше удельной ионизирующей способности альфа-частиц и составляет в воздухе несколько пар ионов на 1 см пути. Вывод. Гамма-излучения обладают наибольшей проникающей способностью по сравнению с проникающей способностью остальных видов радиоактивных излучений. В то же время гамма-излучения обладают очень малой удельной ионизирующей способностью, составляющей в воздухе несколько пар ионов на 1 см пути гамма-квантов.
Нейтронное излучение и его основные свойства
Нейтронное излучение является корпускулярным излучением, возникающим в процессе деления или синтеза ядер. Нейтроны оказывают сильное поражающее действие, так как они, не имея электрического заряда, легко проникают в ядра атомов, из которых состоят живые ткани, и захватываются ими. Более 99% общего количества нейтронов при ядерном взрыве выделяется в течение 10-14 с. Эти нейтроны называются мгновенными. Остальная часть (около 1%) нейтронов излучается позднее некоторыми осколками деления при их бета-распаде. Эти нейтроны называются запаздывающими. Скорость распространения нейтронов доходит до 20000 км/ч. Время, необходимое для того, чтобы все нейтроны прошли расстояние от точки взрыва до места, где они представляют угрозу поражения, составляет около одной секунды после момента взрыва. В зависимости от энергии нейтроны классифицируются следующим образом: медленные нейтроны 0-0, 1 кэВ; нейтроны промежуточных энергий 0, 1-20 кэВ; быстрые нейтроны 20 кэВ-10 МэВ; нейтроны высоких энергий свыше 10 МэВ. Тепловые нейтроны - нейтроны, находящиеся в тепловом равновесии с окружающей средой (с энергией, не превышающей 1 эВ), включены в область медленных нейтронов. Прохождение нейтронов через вещество сопровождается ослаблением их интенсивности. Это ослабление обусловливается взаимодействием нейтронов с ядрами атомов вещества. Рентгеновское излучение
Рентгеновские лучи возникают при бомбардировке быстрыми электронами твердых мишеней. Рентгеновская трубка представляет собой эвакуированный баллон с несколькими электродами (рис. 1.2). Нагреваемый током катод К служит источником свободных электронов, испускаемых вследствие термоэлектронной эмиссии. Цилиндрический электрод Ц предназначен для фокусировки электронного пучка.
Мишенью является анод А, который называют также антикатодом. Его делают из тяжелых металлов (W, Си. Pt и т. д.). Ускорение электронов осуществляется высоким напряжением, создаваемым между катодом и антикатодом. Почти вся энергия электронов выделяется на антикатоде в виде теплоты (в излучение превращается лишь 1-3% энергии). Попав в вещество антикатода, электроны испытывают сильное торможение и становятся источником электромагнитных волн. При достаточно большой скорости электронов, кроме тормозного излучения (т. е. излучения, обусловленного торможением электронов), возбуждается также характеристическое излучение (вызванное возбуждением внутренних электронных оболочек атомов антикатода). Интенсивность рентгеновского излученя может быть измерена как по степени фотографического действия, так и по ионизации, производимой им в газообразных средах, в частности в воздухе. *М интенсивнее излучение, тем большую ионизацию оно производит. По механизму взаимодействия с веществом рентгеновское излучения аналогично у-излучению. Длина волны рентгеновского излучения 10-10-10-6 см, гамма-излучения -10-9 см и ниже. В настоящее время рентгеновские лучи применяются в качестве контрольного средства. С помощью рентгеновских луче» контролируют качество сварки, однородность соответствующих изделий и т. п. В медицине рентгеновские лучи широко применяются для диагностики, а в некоторых случаях и в качестве средства, воздействующего на раковые клетки. Лекция № 11 (можно сделать 2 лекции) Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 7358; Нарушение авторского права страницы