Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Мультиплексор как универсальный логический елемент
Мультиплексоры могут работать в качестве универсального логического элемента, реализующего любую логическую функцию, содержащую до n+1 переменной, где n – число адресных входов мультиплексора.
Использование мультиплексора в качестве универсального логического элемента основано на общем свойстве логических функций независимо от числа аргументов всегда равняться логической единице или нулю: f (Х1, Х2, ХЗ, ..., Хn) = = { }. Если на адресные входы мультиплексора подавать входные переменные, зная, какой выходной уровень должен отвечать каждому сочетанию этих сигналов, то, предварительно установив на информационных входах потенциалы нуля и единицы согласно программе, получим устройство, реализующее требуемую функцию. Поллусуматор Полусумматор — логическая схема, имеющая два входа и два выхода (двухразрядный сумматор, бинарный сумматор). Полусумматор используется для построения двоичных сумматоров. Полусумматор позволяет вычислять сумму A+B, где A и B — это разряды двоичного числа, при этом результатом будут два бита S, C, где S — это бит суммы по модулю, а C — бит переноса. Однако, как можно заметить, для построения схемы двоичного сумматора (трёхразрядный сумматор, тринарный сумматор) необходимо иметь элемент, который суммирует три бита A, B и C, где C — бит переноса из предыдущего разряда, таким элементом является полный двоичный сумматор, который как правило состоит из двух полусумматоров и логического элемента 2ИЛИ. Двоичный полусумматор Двоичный полусумматор Представляет собой объединение двух бинарных (двухоперандных) двоичных логических функций: сумма по модулю два - S и разряд переноса при двоичном сложении - C. Троичный полусумматор представляет собой объединение двух троичных бинарных логических функций - «сложение по модулю 3» и «разряд переноса при троичном сложении». Так как существуют две троичных системы счисления - несимметричная, в которой в разряде переноса не бывает значения больше " 1" и симметричная (Фибоначчи), в которой в разряде переноса возможны все три состояния трита, и, как минимум, три физических реализации троичных систем - трёхуровневая однопроводная, двухуровневая двухпроводная (BCT) и двухуровневая трёхбитная одноединичная, то и троичных полусумматоров может быть большое множество. Троичный трёхуровневый полусумматор описан в [1]. Троичный двухбитный двухпроводный бинарный (двухоперандный) одноразрядный (BCT) полусумматор, работающий в несимметричной троичной системе счисления, названный двухразрядным сумматором, приведён в [2] в разделе BCT Addition в подразделе (f) Circuit diagram и в [3] на рис.3. На рисунке справа приведена схема троичного несимметричного полусумматора в трёхбитной одноединичной системе троичных логических элементов Полный сумматор полные сумматоры — тринарные (трёхоперандные) сумматоры по модулю с разрядом переноса, характеризующиеся наличием трёх входов, на которые подаются одноимённые разряды двух складываемых чисел и перенос из предыдущего (более младшего) разряда, и двумя выходами: на одном реализуется арифметическая сумма по модулю в данном разряде, а на другом — перенос в следующий (более старший разряд). Такие сумматоры изначально ориентированы только на показательныепозиционные системы счисления
Паралельные сумматоры с последовательным переносом
Популярное:
|
Последнее изменение этой страницы: 2016-05-03; Просмотров: 1122; Нарушение авторского права страницы