Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Тема: Исследование и снятие характеристик полупроводникового диода.Стр 1 из 3Следующая ⇒
Тема: Исследование и снятие характеристик полупроводникового диода. Цель работы: Ознакомиться с п / п диодом, исследовать его свойства, снять ВАХ и проанализировать ее. Оборудование: 1. Стенд для исследования диода Выпрямитель ВС-24М Измерительные приборы Порядок выполнения работы 1. Изучить назначение и принцип работы п/п диодов. 2. Собрать схему эксперимента. Переключатель установить в положение «Прямое включение». Увеличивая напряжение от 0 до тех пор пока ток не достигнет значения 300 мА снять показания для 6-8 точек (табл.1.)
Рис 1 – Схема исследования полупроводникового диода
3. Переключатель установить в положение «Обратное включение». Увеличивая напряжение от 0 до тех пор пока ток не начнет резко увеличиваться снять показания для 6-8 точек (табл.2.). 4. Измеренные значения занести в таблицу и построить по ним ВАХ диода. Проанализировать ее. Таблица 1.
Таблица 2.
5. Сделать вывод. Основные теоретические сведения. P-n-переход и его свойства Действие полупроводниковых приборов основано на использовании свойств полупроводников. Полупроводники занимают промежуточное положение между проводниками и диэлектриками. К полупроводникам относятся элементы IV группы периодической системы элементов Д.И. Менделеева, которые на внешней оболочке имеют четыре валентных электрона. Типичные полупроводники - Ge (германий) и Si (кремний). Чистые полупроводники кристаллизуются в виде решетки (рис. 1 а). Каждая валентная связь содержит два электрона, оболочка атома имеет восемь электронов, и атом находится в состоянии равновесия. Чтобы «вырвать» электрон в зону проводимости, необходимо затратить большую энергию. Чистые полупроводники обладают высоким удельным сопротивлением (от 0, 65 Ом-м до 108 Ом-м). Для снижения высокого удельного сопротивления чистых полупроводников в них вводят примеси, такой процесс называется легированием, а соответствующие полупроводниковые материалы - легированными. В качестве легирующих примесей применяют элементы III и V групп периодической системы элементов Д.И. Менделеева. Элементы III группы имеют три валентных электрона, поэтому при образовании валентных связей одна связь оказывается только с одним электроном (рис. 1 б). Такие полупроводники обладают дырочной электропроводностью, так как в них основными носителями заряда являются дырки. Под дыркой понимается место, не занятое электроном, которому присваивается положительный заряд. Такие полупроводники также называются полупроводниками р-типа, а примесь, благодаря которой в полупроводнике оказался недостаток электронов, называется акцепторной. Элементы V группы имеют пять валентных электронов, поэтому при образовании валентных связей один электрон оказывается лишним (рис. 1 в). Такие полупроводники обладают электронной электропроводностью, так как в них основными носителями заряда являются электроны. Они называются полупроводниками п-типа, а примесь, благодаря которой в полупроводнике оказался избыток электронов, называется донорной. Рис. 1. Фрагмент решетки: а) чистого полупроводника; б) полупроводника с акцепторной примесью; в) полупроводника с донорной примесью
Удельное электрическое сопротивление легированного полупроводника существенно зависит от концентрации примесей. При концентрации примесей 1020 ÷ 1021 на 1 см3 вещества оно может быть снижено до 5·10-6 Ом·м для германия и 5·10-5 Ом·м для кремния. Основное значение для работы полупроводниковых приборов имеет электронно-дырочный переход, который называют р-п-переходом (область на границе двух полупроводников, один из которых имеет дырочную, а другой - электронную электропроводность). На практике p-n-переход получают введением в полупроводник дополнительной легирующей примеси. Например, при введении донорной примеси в определенную часть полупроводника р-типа в нем образуется область полупроводника n-типа, граничащая с полупроводником р-типа. Схематически образование p-n-перехода при соприкосновении двух полупроводников с различными типами электропроводности показано на рис. 2. До соприкосновения в обоих полупроводниках электроны, дырки, ионы были распределены равномерно (рис. 2 а). Рис. 2. Образование p-n-перехода: распределение носителей заряда Рис. 5. Вольт-амперная характеристика р-п-перехода
В сильнолегированных полупроводниках может возникать квантово-механический туннельный эффект, который состоит в том, что при очень малой толщине запирающего слоя основные носители могут преодолевать запирающий слой без изменения энергии, что приводит к возрастанию тока на этих участках. Закрытый p-n-переход обладает -электрической емкостью, которая зависит от его площади и ширины, а также от диэлектрической проницаемости запирающего слоя. Свойства p-n-перехода широко используются в полупроводниковых приборах. Полупроводниковые диоды Полупроводниковым диодом называют двухэлектродный полупроводниковый прибор, содержащий один электронно-дырочный р-п переход. По конструктивному исполнению полупроводниковые диоды разделяются на плоскостные и точечные. Плоскостные диоды представляют собой p-n-переход с двумя металлическими контактами, присоединенными к р- и n-областям. В точечном диоде вместо плоской используется конструкция, состоящая из пластины полупроводника и металлического проводника в виде острия. При сплавлении острия с пластиной образуется микропереход. По сравнению с плоскостным диодом падение напряжения на точечном в прямом направлении очень мало, ток в обратном направлении значительно меняется в зависимости от напряжения. Точечные диоды обладают малой межэлектродной емкостью. Рассмотрим некоторые группы полупроводниковых диодов. Выпрямительный полупроводниковый диод используется для выпрямления переменного тока. Типичная вольт-амперная характеристика выпрямительного диода подобна характеристике, представленной на рис. 5. Основным свойством выпрямительного диода является большое различие сопротивлений в прямом и обратном направлениях, что обуславливает вентильные свойства выпрямительного диода, т.е. способность пропускать ток преимущественно в одном (прямом) направлении. Электрические параметры выпрямительного диода: прямое напряжение Unp, которое нормируется при определенном прямом токе 1пр; максимально допустимый прямой ток 1пр тах максимально допустимое обратное напряжение Uобр таx, обратный ток 1обр, который нормируется при определенном обратном напряжении Uo6P, межэлектродная емкость, сопротивление постоянному и переменному току. Полупроводниковый стабилитрон - полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока. Вольт-амперная характеристика стабилитрона приведена на рис. 6. Как видно, в области пробоя напряжение на стабилитроне Ucm лишь незначительно изменяется при больших изменениях тока стабилизации 1ст.
Рис. 6. Вольтамперная характеристика стабилитрона Основные параметры стабилитрона: напряжение на участке стабилизации Ucm; динамическое сопротивление на участке стабилизации Rд = dUcm/dIcm; минимальный ток стабилизации 1ст min, максимальный ток стабилизации fcm max, температурный коэффициент напряжения на участке стабилизации TKU=(dUcm/dT)·100. Стабилитроны используются для стабилизации и ограничения напряжения, а также в качестве источника опорного (эталонного) напряжения в прецизионной измерительной технике. Туннельный диод - это полупроводниковый диод, в котором благодаря использованию высокой концентрации примесей возникает очень узкий барьер и наблюдается туннельный механизм переноса зарядов через р-п-переход. Характеристика туннельного диода имеет область отрицательного сопротивления, т. е. область, в которой положительному приращению напряжения соответствует отрицательное приращение тока (пунктирная линия на рис. 83). Варикап - полупроводниковый диод, в котором используется зависимость емкости p-n-перехода от обратного напряжения, который предназначен для применения в качестве элемента с электрически управляемой емкостью. Фотодиод - полупроводниковый диод, в котором в результате освещения p-n-перехода повышается обратный ток. Светодиод - полупроводниковый диод, в котором в режиме прямого тока в зоне p-n-перехода возникает видимое или инфракрасное излучение. Фотодиоды используются в солнечных батареях, применяемых на космических кораблях и в южных районах земного шара. Светодиоды находят применение для индикации в измерительных приборах, в наручных часах, микрокалькуляторах и других приборах.
К С -156 А Г Д -507 Б I II III IV I – показывает материал полупроводника: Г (1) – германий; К (2) – кремний; А (3) – арсенид галлия. II – тип полупроводникового диода: Д – выпрямительные, ВЧ и импульсные диоды; А – диоды СВЧ; C – стабилитроны; В – варикапы; И – туннельные диоды; Ф – фотодиоды; Л – светодиоды; Ц – выпрямительные столбы и блоки. III – три цифры – группа диодов по своим электрическим параметрам: IV – модификация диодов в данной (третьей) группе. Условные графические обозначения рассмотренных полупроводниковых диодов представлены на рис. 7.
Рис. 7 Условные графические обозначения полупроводниковых диодов: КОНТРОЛЬНЫЕ ВОПРОСЫ
Виды диодов, их применение Маркировка диодов
Тема: Исследование и снятие характеристик полупроводникового диода. Популярное:
|
Последнее изменение этой страницы: 2016-05-03; Просмотров: 1014; Нарушение авторского права страницы