Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


В полупроводниках с различными типами электропроводности



до соприкосновения (а); после соприкосновения (б)

При соприкосновении полупроводников в погра­ничном слое происходит рекомбинация (воссоединение) электронов и дырок. Свободные электроны из зоны полу­проводника n-типа занимают свободные уровни в валент­ной зоне полупроводника р-типа. В результате вблизи гра­ницы двух полупроводников образуется слой, лишенный подвижных носителей заряда и поэтому обладающий вы­соким удельным сопротивлением, - так называемый запи­рающий слой (рис. 2 б). Толщина запирающего слоя l обычно не превышает нескольких микрометров.

Расширению запирающего слоя препятствуют не­подвижные ионы донорных и акцепторных примесей, ко­торые образуют на границе полупроводников двойной электрический слой. Этот слой определяет контактную разность потенциалов ∆ φ к на границе полупроводников (рис. 3). Возникшая разность потенциалов создает в запи­рающем слое электрическое поле напряженностью Езап, препятствующее как переходу электронов из полупровод­ника n-типа в полупроводник р-типа, так и переходу дырок в полупроводник n-типа. В то же время электроны могут свободно двигаться из полупроводника р-типа в полупро­водник n-типа, как и дырки из полупроводника n-типа в полупроводник р-типа. Таким образом, контактная раз­ность потенциалов препятствует движению основных но­сителей заряда и не препятствует движению неосновных носителей заряда. Однако при движении через р-п-переход неосновных носителей {дрейфовый ток Iдр) происходит снижение контактной разности потенциалов, что позволяет некоторой части основных носителей, обладающих доста­точной энергией, преодолеть потенциальный барьер, обу­словленный контактной разностью потенциалов. Появля­ется диффузионный ток 1диф, который направлен навстречу дрейфовому току 1др, то есть возникает динамическое рав­новесие, при котором 1др= 1диф.

Если к p-n-переходу приложить внешнее напряже­ние Uобр, которое создает в запирающем слое электриче­ское поле напряженностью Евн, совпадающее по направле­нию с полем неподвижных ионов напряженностью Езап (рис. 4 а), то это приведет к расширению запирающего слоя, так как носители заряда уйдут от контактной зоны. При этом сопротивление p-n-перехода велико, ток через него мал, так как обусловлен движением неосновных носителей заряда. В этом случае ток называют обратным Iобр а р-п-переход - закрытым.

При противоположной полярности источника на­пряжения (рис. 4 б) внешнее поле направлено навстречу полю двойного электрического слоя, толщина запираю­щего слоя уменьшается. Сопротивление р-п-перехода резко снижается и возникает сравнительно большой ток. В этом случае ток называют прямым 1пр, а р-п-переход - открытым.

Рис.3. Образование контактной разности потенциалов на границе полупроводников разных типов электропроводимости

Рис. 4. p-n-переход во внешнем электрическом поле:

а) к p-n-переходу приложено обратное напряжение;

б) к p-n-переходу приложено прямое напряжение

На рис. 5 показана вольт-амперная характеристи­ка p-n-перехода. Пробой p-n-перехода связан с тем, что при движении через p-n-переход под действием электрического поля неосновные носители заряда приобретают энергию, достаточную для ударной ионизации атомов полупровод­ника. В переходе начинается лавинообразное размножение носителей заряда, что приводит к резкому увеличению об­ратного тока через p-n-переход при почти неизменном об­ратном напряжении. Этот вид электрического пробоя на­зывают лавинным. Обычно он развивается в относительно широких p-n-переходах, которые образуются в слаболеги­рованных полупроводниках

В сильнолегированных полупроводниках ширина запирающего слоя меньше, что препятствует возникнове­нию лавинного пробоя, так как движущиеся носители не приобретают энергии, достаточной для ударной иониза­ции. В таких полупроводниках возможно возникновение эффекта Зенера, когда при достижении критической на­пряженности электрического поля в p-n-переходе за счет энергии поля появляются пары носителей электрон - дыр­ка, и существенно возрастает обратный ток р-п-перехода.

Для электрического пробоя характерна обрати­мость, заключающаяся в том, что первоначальные свойст­ва p-n-перехода полностью восстанавливаются, если сни­зить напряжение на p-n-переходе. Благодаря этому элек­трический пробой используют в качестве рабочего режима в полупроводниковых диодах.

Если температура p-n-перехода возрастает в ре­зультате его нагрева обратным током и недостаточного теплоотвода, то усиливается процесс генерации пар носи­телей заряда. Это приводит к дальнейшему увеличению обратного тока и нагреву p-n-перехода, что может вызвать разрушение перехода. Такой процесс называют тепловым пробоем. Тепловой пробой разрушает р-п-переход.

Рис. 5. Вольт-амперная характеристика р-п-перехода

 

В сильнолегированных полупроводниках может возникать квантово-механический туннельный эффект, который состоит в том, что при очень малой толщине за­пирающего слоя основные носители могут преодолевать запирающий слой без изменения энергии, что приводит к возрастанию тока на этих участках.

Закрытый p-n-переход обладает -электрической ем­костью, которая зависит от его площади и ширины, а так­же от диэлектрической проницаемости запирающего слоя.

Свойства p-n-перехода широко используются в по­лупроводниковых приборах.

Полупроводниковые диоды

Полупроводниковым диодом называют двухэлектродный полупроводниковый прибор, содержащий один электронно-дырочный р-п переход.

По конструктивному исполнению полупроводни­ковые диоды разделяются на плоскостные и точечные. Плоскостные диоды представляют собой p-n-переход с двумя металлическими контактами, присоединенными к р- и n-областям. В точечном диоде вместо плоской использу­ется конструкция, состоящая из пластины полупроводника и металлического проводника в виде острия. При сплавле­нии острия с пластиной образуется микропереход. По сравнению с плоскостным диодом падение напряжения на точечном в прямом направлении очень мало, ток в обрат­ном направлении значительно меняется в зависимости от напряжения. Точечные диоды обладают малой межэлек­тродной емкостью.

Рассмотрим некоторые группы полупроводнико­вых диодов.

Выпрямительный полупроводниковый диод исполь­зуется для выпрямления переменного тока.

Типичная вольт-амперная характеристика выпря­мительного диода подобна характеристике, представлен­ной на рис. 5. Основным свойством выпрямительного диода является большое различие сопротивлений в прямом и обратном направлениях, что обуславливает вентильные свойства выпрямительного диода, т.е. способность про­пускать ток преимущественно в одном (прямом) направле­нии. Электрические параметры выпрямительного диода: прямое напряжение Unp, которое нормируется при опреде­ленном прямом токе 1пр; максимально допустимый прямой ток 1пр тах максимально допустимое обратное напряжение Uобр таx, обратный ток 1обр, который нормируется при опре­деленном обратном напряжении Uo6P, межэлектродная ем­кость, сопротивление постоянному и переменному току.

Полупроводниковый стабилитрон - полупровод­никовый диод, напряжение на котором в области электри­ческого пробоя слабо зависит от тока.

Вольт-амперная характеристика стабилитрона при­ведена на рис. 6.

Как видно, в области пробоя напряжение на стаби­литроне Ucm лишь незначительно изменяется при больших изменениях тока стабилизации 1ст.

Рис. 6. Вольтамперная характеристика стабилитрона

Основные параметры стабилитрона: напряжение на участке стабилизации Ucm; динамическое сопротивление на участке стабилизации Rд = dUcm/dIcm; минимальный ток стабилизации 1ст min, максимальный ток стабилизации fcm max, температурный коэффициент напряжения на участ­ке стабилизации TKU=(dUcm/dT)·100.

Стабилитроны используются для стабилизации и ограничения напряжения, а также в качестве источника опорного (эталонного) напряжения в прецизионной изме­рительной технике.

Туннельный диод - это полупроводниковый диод, в котором благодаря использованию высокой концентрации примесей возникает очень узкий барьер и наблюдается туннельный механизм переноса зарядов через р-п-переход. Характеристика туннельного диода имеет область отрица­тельного сопротивления, т. е. область, в которой положи­тельному приращению напряжения соответствует отрица­тельное приращение тока (пунктирная линия на рис. 83).

Варикап - полупроводниковый диод, в котором ис­пользуется зависимость емкости p-n-перехода от обратного напряжения, который предназначен для применения в ка­честве элемента с электрически управляемой емкостью.

Фотодиод - полупроводниковый диод, в котором в результате освещения p-n-перехода повышается обрат­ный ток.

Светодиод - полупроводниковый диод, в котором в режиме прямого тока в зоне p-n-перехода возникает ви­димое или инфракрасное излучение.

Фотодиоды используются в солнечных батареях, применяемых на космических кораблях и в южных рай­онах земного шара. Светодиоды находят применение для индикации в измерительных приборах, в наручных часах, микрокалькуляторах и других приборах.

 


Поделиться:



Популярное:

  1. Блок 15. Сложное предложение с различными видами связи. Знаки препинания в сложных синтаксических конструкциях. Сочетание знаков и последовательность их расположения
  2. Больным, которые страдают различными формами аллергии, следует максимально избегать контакта с аллергенами для предупреждения развития анафилактического шока
  3. Зависимость электропроводности фоторезистора от освещенности
  4. ИССЛЕДОВАНИЕ ЭЛЕКТРОПРОВОДНОСТИ
  5. Общие сведения о полупроводниках
  6. Организация комиссий Коммуны по управлению различными административными службами
  7. Правовое государство – это такая форма организации и деятельности государственной власти, которая строится во взаимоотношениях с индивидами и их различными объединениями на основе норм права.
  8. Расчёт стоимости строительно-монтажных работ различными методами.
  9. СВЯЗИ МЕЖДУ РАЗЛИЧНЫМИ ТИПАМИ ДЕТЕРМИНАЦИИ
  10. СВЯЗИ МЕЖДУ РАЗЛИЧНЫМИ ТИПАМИ ДЕТЕРМИНАЦИИ
  11. СВЯЗИ МЕЖДУ РАЗЛИЧНЫМИ ТИПАМИ ДЕТЕРМИНАЦИИ


Последнее изменение этой страницы: 2016-05-03; Просмотров: 946; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь