Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Фарадеевская модель электромагнитного поля
Мир электромагнитных явлений, каким его представлял и описывал Фарадей, решительно отличался от всего, что было в физике прежде. В записи своего дневника от 7 ноября 1845 года Фарадей впервые употребил термин «электромагнитное поле» (англ. field), этот термин позднее перенял и ввёл в широкое употребление Максвелл. Поле — это область пространства, сплошь пронизанная силовыми линиями. Силы взаимодействия токов, введённые Ампером, считались дальнодействующими; Фарадей решительно оспорил это положение и сформулировал (словесно) свойства электромагнитного поля как существенно близкодейственные, то есть непрерывно передающиеся от каждой точки к соседним точкам с конечной скоростью. До Фарадея электрические силы понимались как взаимодействие зарядов на расстоянии — где нет зарядов, нет и сил. Фарадей изменил эту схему: заряд создаёт протяжённое электрическое поле, и уже с ним взаимодействует другой заряд, дальнодействия на расстоянии нет. С магнитным полем положение оказалось более сложным — оно не является центральным, и именно для определения направления магнитных сил в каждой точке Фарадей ввёл понятие силовых линий. Веским основанием для отказа от действия на расстоянии были опыты Фарадея с диэлектриками и диамагнетиками — они ясно показали, что среда между зарядами активно участвует в электромагнитных процессах. Более того, Фарадей убедительно показал, что в ряде ситуаций электрические силовые линии искривляются, подобно магнитным — например, экранировав два изолированных шара друг от друга и зарядив один из них, можно наблюдать индуктивные заряды на втором шаре. Из полученных результатов Фарадей сделал вывод, «что сама обычная индукция во всех случаях является действием смежных частиц и что электрическое действие на расстоянии (то есть обыкновенное индуктивное действие) происходит только благодаря влиянию промежуточной материи». Джеймс Кларк Максвелл в «Трактате об электричестве и магнетизме» указал на суть представлений Фарадея об электромагнетизме: Фарадей своим мысленным взором видел пронизывающие всё пространство силовые линии там, где математики видели центры сил, притягивающие на расстоянии. Фарадей видел среду там, где они не видели ничего, кроме расстояния. Фарадей усматривал местонахождение явлений в тех реальных процессах, которые происходят в среде, а они довольствовались тем, что нашли его в силе действия на расстоянии, которая прикладывается к электрическим жидкостям. …Некоторые из наиболее плодотворных методов исследования, открытых математиками, могли бы быть выражены в терминах представлений, заимствованных у Фарадея, значительно лучше, чем они выражались в их оригинальной форме. Начиная с 11-го выпуска серии «Экспериментальных исследования по электричеству», Фарадей посчитал возможным обобщить и теоретически осмыслить огромный накопленный материал. Система мира Фарадея отличалась большой оригинальностью. Он не признавал существования в природе пустоты, даже заполненной эфиром. Мир полностью заполнен проницаемой материей, и влияние каждой материальной частицы близкодейственно, то есть распространяется на всё пространство с конечной скоростью. Наблюдатель воспринимает это влияние как разного рода силы, но, как писал Фарадей, нельзя сказать, что одна из сил первична и является причиной других, «все они находятся во взаимной между собой зависимости и имеют общую природу». В целом динамика мира Фарадея достаточно близка к представлениям об электромагнитном поле, какими они были до появления квантовой теории. В 1832 году Фарадей отвёз запечатанный конверт в Королевское общество. Сто лет спустя (1938 год) конверт вскрыли и обнаружили там формулировку гипотезы: индуктивные явления распространяются в пространстве с некоторой конечной скоростью, причём в виде волн. Эти волны также «являются наиболее вероятным объяснением световых явлений». Окончательно этот вывод обосновал Максвелл 30 лет спустя. Теоретические рассуждения Фарадея нашли вначале мало сторонников. Фарадей не владел высшей математикой (в его трудах почти нет формул) и для создания своих научных моделей использовал свою исключительную физическую интуицию. Он отстаивал физическую реальность введённых им силовых линий; однако учёные того времени, уже свыкшиеся с дальнодействием ньютонового притяжения, теперь уже к близкодействию относились с недоверием. В 1860-х годах Максвелл изложил идеи Фарадея математически, скромно указав, что он всего лишь «одел в изысканные математические одежды» теорию Фарадея. Первая статья на эту тему никому ещё не известного 26-летнего Максвелла была названа «О фарадеевских силовых линиях» (1857). Фарадей сразу написал автору дружеское и ободряющее письмо: Мой дорогой сэр, я получил Вашу статью и очень благодарен Вам за неё. Не хочу сказать, что благодарю Вас за то, что Вами сказано относительно «силовых линий», поскольку я знаю, что Вы сделали это в интересах философской правды; но Вы должны также предполагать, что эта работа не только приятна мне, но и даёт мне стимул к дальнейшим размышлениям. Я поначалу испугался, увидев, какая мощная сила математики приложена к предмету, а затем удивился тому, насколько хорошо предмет её выдержал… Всегда истинно Ваш М. Фарадей. После опытов Герца (1887—1888) фарадеевско-максвелловская полевая модель становится общепризнанной. «Экспериментальные исследования по электричеству» Фарадей работал чрезвычайно методично — обнаружив эффект, он изучал его максимально глубоко — например, выяснял, от каких параметров и как он зависит (материал, температура и т. п.). Поэтому число опытов (и соответственно — число выпусков «Опытных исследований по электричеству») так велико. Нижеследующий краткий перечень тематики выпусков даёт представление о размахе и глубине исследований Фарадея. 1.Индукция электрических токов. Образование электричества из магнетизма. 2.Земная магнито-электрическая индукция. 3.Тождество отдельных видов электричества, происходящих от различных источников (в то время многие физики считали, что разные способы получения генерируют принципиально «разное электричество»). 4.О новом законе электрической проводимости. 5.Об электрохимическом разложении. Влияние воды на электрохимическое разложение. Теория электрохимического разложения. 6.О способности металлов и других твёрдых тел вызывать соединение газообразных тел. 7.Об электрохимическом разложении (продолжение). О некоторых общих условиях электрохимического разложения. О новом приборе для измерения гальванического электричества. О первичном или вторичном характере выделяющихся у электродов химических веществ. Об определённой природе и о размерах электрохимического разложения. 8.Об электричестве гальванического элемента; его источник, количество, напряжение и основные свойства его. О напряжении, необходимом для электролиза. 9.Об индуктивном влиянии электрического тока на самого себя и об индуктивном действии электрических токов вообще. 10.О гальванической батарее усовершенствованного типа. Некоторые практические указания. 11.Теория индукции. Общие выводы относительно природы индукции. 12.Об индукции (продолжение). Проводимость, или кондуктивный разряд. Электролитический разряд. Разрывной разряд и изоляция. 13.Об индукции (продолжение). Разрывной разряд (продолжение). 14.Природа электрической силы или сил. Связь между электрической и магнитной силами. Замечания об электрическом возбуждении. 15.Заключение о характере направления электрической силы у электрического угря. 16.Об источнике мощности гальванического элемента. 17.Об источнике мощности гальванического элемента (продолжение). Действие температуры. Действие разведения. Изменения порядка металлических элементов в гальванических цепях. Неправдоподобность предположения о контактной природе силы. 18.Об электричестве, развивающемся при трении воды и пара о другие тела. 19.Действие магнитов на свет. Действие электрических токов на свет. 20.О новых магнитных действиях и о магнитном состоянии всякого вещества. Действие магнитов на тяжёлое стекло. Действие магнитов на другие вещества, оказывающие магнитное действие на свет. Действие магнитов на металлы вообще. 21.О новых магнитных действиях и о магнитном состоянии всякого вещества (продолжение). Действие магнитов на магнитные металлы и их соединения. Действие магнитов на воздух и газы. 22.О кристаллической полярности висмута и других тел и её отношении к магнитной форме силы. Кристаллическая полярность висмута, сурьмы, мышьяка. Кристаллическое состояние различных тел. О природе магнекристаллической силы и общие соображения. О положении кристалла сульфата железа в магнитном поле. 23.О полярном или ином состоянии диамагнитных тел. 24.О возможной связи между тяготением и электричеством. 25.О магнитном и диамагнитном состоянии тел. Газообразные тела под влиянием магнитной силы не расширяются. Разностное магнитное действие. Магнитные свойства кислорода, азота и пустоты. 26.Способность проводить магнетизм. Магнитная проводимость. Полярность проводимости. Магнекристаллическая проводимость. Атмосферный магнетизм. 27.Об атмосферном магнетизме (продолжение). Экспериментальное исследование законов магнитного действия атмосферы и их применение к отдельным случаям. Доклад об атмосферном магнетизме. 28.О магнитных силовых линиях, определённость их характера и их распределение в магните и в окружающем пространстве. 29.О применении индукционного магнитоэлектрического тока для обнаружения и измерения магнитной силы. Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1143; Нарушение авторского права страницы