Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Цифро-аналоговые преобразователи



Ниже будут рассмотрены цифро-аналоговые преобразователи (ЦАП), построенные по принципу суммирования напряжений или токов, пропорциональных весовым коэффициентам двоичного кода.

Схема ЦАП с суммированием напряжений.

Одна из таких схем с суммированием напряжений на операционном усилителе приведена на рис. 10.71. Триггеры образуют регистр, в который помещаются двоичные числа, предназначенные для перевода в пропорциональные им значения напряжения на выходе. Будем считать, что напряжение на выходе каждого из триггеров может принимать одно из двух возможных значений: Е — при состоянии 1 и 0 при состоянии 0.

Напряжения с выходов триггеров передаются на выход ЦАП через операционный усилитель, работающий в режиме взвешенного суммирования напряжений (аналогового сумматора). Для каждого триггера предусматривается отдельный вход в сумматоре с определенным коэффициентом передачи

.

Таким образом, напряжение с выхода триггера n-го разряда передается на выход усилителя с коэффициентом передачи: ; этот коэффициент для (n-1)-го разряда: ; для (n-2)-го разряда: и т. д.

Обратим внимание на то, что коэффициенты передачи усилителя с отдельных его входов находятся в том же соотношении, что и весовые коэффициенты соответствующих разрядов двоичного числа. Так, в 2 раза [больше и весовой коэффициент n-го разряда в 2 раза больше весового коэффициента (n-1)-го разряда. Следовательно, напряжения, передаваемые на выход усилителя с выходов триггеров отдельных разрядов, находящихся в состоянии 1, пропорциональны весовым коэффициентам разрядов.

Если в состоянии 1 находятся одновременно триггеры нескольких разрядов, то напряжение на выходе усилителя равно сумме напряжений, передаваемых на этот выход от отдельных триггеров. Пусть цифры отдельных разрядов двоичного числа в регистре . Тогда напряжение на выходе усилителя

Здесь N — десятичное значение двоичного числа, введенного в регистр.

Из последнего выражения видно, что напряжение на выходе ЦАП пропорционально значению числа в регистре.

Рассмотрим работу ЦАП в случае, когда на триггерах построен двоичный счетчик. Если подать на вход этого счетчика последовательность импульсов, то с приходом каждого очередного импульса число в счетчике будет увеличиваться на единицу и напряжение на выходе ЦАП будет возрастать на ступеньку, соответствующую единице младшего разряда счетчика. Величина такой ступеньки . Таким образом, напряжение на выходе ЦАП будет иметь ступенчатую форму, как показано на рис. 10.72. После поступления импульсов все разряды счетчика будут содержать 1, на выходе ЦАП образуется максимальное напряжение

рис 10.74

При большом числе разрядов и . Далее очередным импульсом счетчик будет сброшен в нулевое состояние, нулевым будет и выходное напряжение ЦАП. После этого счетчик начинает счет импульсов сначала и на выходе ЦАП вновь формируется напряжение ступенчатой формы.

Суммарная абсолютная погрешность преобразователя должна быть меньше выходного напряжения, соответствующего единице младшего разряда входного двоичного числа:

рис 10.75

рис 10.76

Отсюда можно получить условие для относительной погрешности:

Это соотношение определяет связь между относительной погрешностью преобразователя и числом его разрядов п. Так, при .

Недостатки рассмотренной схемы преобразователя:

· используются высокоточные резисторы с различными сопротивлениями;

· трудно обеспечить высокую точность выходного напряжения триггеров.

Эти недостатки устранены в схеме ЦАП, приведенной на рис. 10.73, где показана схема трехразрядного преобразователя. Нетрудно построить схему с любым заданным числом разрядов. Особенности этой схемы, называемой схемой с суммированием напряжений на аттенюаторе сопротивлений, состоит в том, что, во-первых, используются резисторы лишь с двумя значениями сопротивлений (R и 2R) и, во-вторых, выходные напряжения триггеров непосредственно не участвуют в формировании выходного напряжения ЦАП, а используются лишь для управления состоянием ключей, т. е. устранены отмеченные выше недостатки предыдущей схемы ЦАП (см. рис. 10.71).

Рассмотрим подробнее работу такого преобразователя. В каждом разряде имеется два.ключа, через один из них в аттенюатор сопротивлений подается напряжение Е, через другой - нулевое напряжение.

Определим напряжения, возникающие на выходе ЦАП от единиц отдельных разрядов числа, помещаемого в регистр. Пусть в регистр введено число . Триггер в состоянии 1, и в третьем разряде открыт ключ , в остальных разрядах триггеры в состоянии 0, и открыты ключи и (рис. 10.74, а). Последовательными преобразованиями можно получить схему (рис. 10.74, < 3), из которой следует, что напряжение в точке .

Если в регистр поместить число , то аттенюатор можно представить схемой, показанной на рис. 10.75, а. Путем преобразования ее можно привести к схеме, представленной на рис. 10.75, в. Возникающее в точке Ач напряжение имеет то же [значение, что и в предыдущей схеме в точке . Из рис. 10.75 видно, что при передаче на выход преобразователя это напряжение делится на два и, таким образом, .

Можно показать, что при числе напряжение в точке . При передаче этого.напряжения в точку и далее от точки к точке напряжение каждый раз делится на два и .

Итак, напряжение на выходе, соответствующее единицам отдельных разрядов двоичного числа в регистре, пропорционально весовым коэффициентам разрядов. При n-разрядном регистре, обозначив цифры разрядов двоичного числа , получим выражение напряжения на выходе ЦАП:

Из выражения видно, что выходное напряжение ЦАП пропорционально значению числа N, помещаемого в регистр.

Аппаратурные погрешности преобразования в данной схеме связаны с отклонениями сопротивлений резисторов от их номинальных значений, неидеальностью ключей (сопротивление реального ключа в закрытом состоянии не равно бесконечности, а в открытом - неравно нулю), нестабильностью источника напряжения Е. Наибольшее влияние на погрешность ЦАП оказывают эти отклонения в старших разрядах.

 

Схема ЦАП с суммированием токов.

На рис. 10.76 показан еще один вариант схемы ЦАП - схема с суммированием токов на аттенюаторе сопротивлений. Вместо источника стабильного напряжения Е, в данной схеме используются источники стабильного тока. Если триггер находится в состоянии 1, ток I источника через открытый ключ втекает в аттенюатор сопротивлений; если триггер в состоянии 0, то открывается другой ключ, который замыкает источник. На рис. 10.77, а показана схема, соответствующая числу . Путем преобразований она приводится к эквивалентным схемам на рис. 10.77, 6 и в, откуда следует . Такое же напряжение образуется в любой из точек , если соответствующий разряд регистра содержит единицу. При передаче напряжения между этими точками напряжение делится на два и, следовательно, выходное напряжение

 

Элементы, используемые в ЦАП.

Рассмотрим схемные решения элементов, используемых в ЦАП.

Источник стабильного напряжения. На рис. 10.78 представлена схема простого стабилизатора напряжения. В цепь между входом и выходом стабилизатора последовательно включен транзистор . Стабилизация выходного напряжения обеспечивается тем, что при возрастании входного напряжения увеличивается напряжение на транзисторе и наоборот, при снижении напряжение на транзисторе уменьшается. Таким образом, все изменения входного напряжения гасятся на транзисторе . Такой режим транзистора обеспечивается усилителем, построенным на транзисторе . Пусть, например, растет и вследствие этого имеет тенденцию к росту и . Малый рост , усиливаясь, значительно уменьшает напряжение на коллекторе и базе , возрастает падение напряжения между коллектором и эмиттером транзистора .

рис 10.77 рис 10.78

Цепочка из резистора и стабилитрона обеспечивает в цепи эмиттера постоянное напряжение , которое стремится запереть транзистор. Для компенсации этого отрицательного смещения используется положительное напряжение, снимаемое с резистора делителя напряжения, составленного из резисторов и . Чем больше , тем большая часть напряжения должна передаваться с на базу и вместе с этим и большая часть изменений напряжения будет прикладываться к базе и, усиливаясь, передаваться на базу .

Источник стабильного тока. Стабилизатор тока, схема которого приведена на рис. 10.79, работает аналогично стабилизатору напряжения. Отличие состоит в том, что входное напряжение усилителя на транзисторе снимается с резистора , который в схеме стабилизатора тока включен последовательно с нагрузкой (ток нагрузки I проходит через . Если, например, возрастает или уменьшится и, таким образом, ток имеет тенденцию к росту, возрастает напряжение на и на базе транзистора . Это приводит к снижению потенциала коллектора и базы , растет напряжение между коллектором и базой транзистора , что препятствует росту тока I.

Ключевые устройства. Ключи преобразователя с суммированием напряжений на сетке сопротивлений (см. рис. 10.73) могут быть выполнены по схеме, представленной на рис. 10.80, а. Транзисторы и управляются напряжениями с выходов триггера. Выход подключается к аттенюатору сопротивлений.

Пусть триггер находится в состоянии 1. На его инверсном выходе нулевой потенциал и транзистор , на базу которого этот потенциал поступает, закрыт. На прямом выходе триггера высокое напряжение, которое, поступая на вход транзистора , удерживает его в открытом состоянии. Через открытый транзистор в аттенюатор сопротивлений подается напряжение Е. Если триггер находится в состоянии 0, закрыт транзистор , а через открытый транзистор в аттенюатор сопротивлений поступает нулевое напряжение.

Таким образом, выполненное по данной схеме устройство исполняет роль двух ключей в разряде преобразователя.

В преобразователе с суммированием токов не предъявляется высоких требований к малости сопротивления открытого ключа. В этом преобразователе может быть использован диодный переключатель, схема которого представлена на рис. 10.80, 6. Если триггер находится в состоянии 0, высокое напряжение, поступающее с инверсного выхода триггера, удерживает диод в открытом состоянии. Ток источника замыкается через диод и триггер. Если триггер находится в состоянии 1, диод закрыт и ток I замыкается через диод и аттенюатор сопротивлений.

рис 10.79 рис 10.80

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-28; Просмотров: 939; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь