Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Перевод чисел из двоичной системы счисления



в систему счисления с основанием 2n и обратно

Если основание n-ичной системы счисления является степенью числа 2, то перевод чисел из двоичной системы счисления в n-ичную и обратно можно проводить по более простым правилам.

Пусть q = 23 и дано некоторое двоичное число

Исходя из приведенных выше рассуждений, можно сформулировать следующий алгоритм перевода целых двоичных чисел в систему с основанием q = 2n:

Для того чтобы целое двоичное число записать в системе счисления с основанием q = 2n, нужно:

1) данное двоичное число разбить справа налево на группы по п цифр в каждой;

2) если в последней левой группе окажется меньше п разрядов, то ее надо дополнить слева нулями до нужного числа разрядов;

3) рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q = 2n.

Пример 1. Число 1011000010001l00102 заменим равным ему числом восьмеричной системы счисления.

Разбиваем число справа налево на триады (группы по 3 цифры) и под каждой из них записываем соответствующую восьмеричную цифру:

 

 

Получаем восьмеричное представление исходного числа: 5410628.

Пример 2. Число 10000000001111100001112 переведем в шестнадцатеричную систему счисления.

Разбиваем число справа налево на тетрады (группы по четыре цифры) и под каждой из них записываем соответствующую шестнадцатеричную цифру:

 

F

 

Получаем шестнадцатеричное представление исходного числа: 400F8716.

Для того чтобы дробное двоичное число записать в системе счисления с основанием q = 2n, нужно:

1) данное двоичное число разбить слева направо на группы по п цифр в каждой;

2) если в последней правой группе окажется меньше п разрядов, то ее надо дополнить справа нулями до нужного числа разрядов;

3) рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q = 2n.

Пример 3. Число 0, 101100012 заменим равным ему числом восьмеричной системы счисления.

Разбиваем число слева направо на триады и под каждой из них записываем соответствующую восьмеричную цифру:

 

000,
0,

 

Получаем восьмеричное представление исходного числа: 0, 5428.

Пример 4. Число 0, 1000000000112 переведем в шестнадцатеричную систему счисления. Разбиваем число слева направо на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:

 

0,
0,

 

Получаем шестнадцатеричное представление исходного числа: 0, 80316.

Для того чтобы произвольное двоичное число записать
в системе счисления с основанием q = 2n, нужно:

1) целую часть данного двоичного числа разбить справа налево, а дробную - слева направо на группы по п цифр в каждой;

2) если в последней левой и/или правой группе окажется меньше п разрядов, то их надо дополнить слева и/или справа нулями до нужного числа разрядов;

3) рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q = 2n.

Пример 5. Число 111100101, 01112 заменим равным ему числом восьмеричной системы счисления.

Разбиваем целую и дробную части числа на триады и под каждой из них записываем соответствующую восьмеричную цифру:

 

101,
5,

 

Получаем восьмеричное представление исходного числа: 745, 348.

Пример 6. Число 1001000, 11010012 переведем в шестнадцатеричную систему счисления. Разбиваем целую и дробную части числа на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:

 

1000,
8, D

 

Получаем шестнадцатеричное представление исходного числа: 48, D216.

Для того чтобы произвольное число, записанное в системе счисления с основанием q = 2n, перевести в двоичную систему счисления, нужно каждую цифру этого числа заменить ее
n-значным эквивалентом в двоичной системе счисления.

Пример 7. Переведем шестнадцатеричное число 4AC35 в двоичную систему счисления. В соответствии с алгоритмом:

 

A C

 

Получаем двоичное представление исходного числа:

10010101100001101012.

Пример 8. Переведем восьмеричное число 10248 в двоичную систему счисления.

 

 

Получаем двоичное представление исходного числа:

10000101002.

Описанные алгоритмы позволяют достаточно быстро и просто осуществлять переводы десятичных чисел в двоичную систему счисления и обратно с использованием в качестве промежуточной восьмеричной или шестнадцатеричной системы счисления.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-28; Просмотров: 2359; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь