Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Геометрическая интерпретация задач линейного программирования



Рассмотрим такой пример:

при условиях

 


Рис. 4.1.

 

Каждое из этих неравенств определяет полуплоскости, пересечение которых дает многоугольник, заштрихованый на рис. 4.1. Этот многоугольник (выпуклый многогранник) и представляет собой допустимое множество решений R(x1, x2) задачи ЛП. Теперь рассмотрим целевую функцию

f(x1, x2)=4x1+3x2,

пусть ее значения

f(x1, x2)=12000=Z1.

График уравнения 4х1+3х2=12000 - прямая с отрезками на осях x1=3000; x2=4000.

При f(x1, x2)=24000 получим прямую z2.

Прямая z2 параллельная прямой z1, но расположена выше от нее. Передвигая прямую z вверх параллельно самой себе, приходим к такому ее положению, когда прямая и множество R будут иметь только одну общую точку А.

Очевидно, что точка А (x1=2000; x2=6000) - оптимальное решение, так как она лежит на прямой с максимально возможным значением . Заметим, что эта точка оказалась крайней точкой множества R.

При векторной форме ограничения задачи ЛП записываются так:

( 3.1)

где

Рассмотрим допустимое множество A1, A2,., An в пространстве данных векторов. Поскольку в формуле (3.1) , то все положительные комбинации векторов A1, A2,., An образуют конус. Поэтому вопрос о существовании допустимых решений равнозначен вопросу о принадлежности вектора b этому конусу. Поскольку A1, A2,., An m -мерные векторы (n > m), то среди них всегда обнаружится m линейно-независимых векторов, образующих базис m -мерного пространства и содержащих конус, образованный векторами A1, A2,., An...

Поэтому справедливо следующее утверждение. Если задача ЛП содержит n переменных и m ограничений, записанных в форме неравенств (n > m), не считая ограничений неотрицательности переменных , то в оптимальное решение входит не более чем m ненулевых компонент вектора x.

Расширенная форма задачи ЛП. Для решения задач ЛП необходимо переходить от ограничений - неравенств к ограничениям в форме уравнений. Для этого в каждое неравенство вводят по одной свободной переменной , чтобы превратить его в равенство. В таком виде задачу ЛП называют расширенной и записывают так:

( 3.2)

при ограничениях

a11x1+a12x2+.+a1nxn+1xn+1+0xn+2+...+0xn+m=b1;

a21x1+a22x2+.+a2nxn+0xn+1+1xn+2+...+0xn+m=b2;

........................................

am1x1+am2x2+.+amnxn+0xn+1+0xn+2+...+1xn+m=bm...

В матричной форме эта задача имеет следующий вид:

при ограничениях

где

( 3.3)

Наконец, векторная форма записи расширенной задачи ЛП:

при ограничениях

( 3.4)


Рис. 4.2.


Рис. 4.3.

 

Пусть R и R1 - допустимые множества решений исходной и расширенной задач соответственно. Тогда любой точке допустимого множества решений R1 соответствует единственная точка множества R, и наоборот.

Установим отношение между элементами R и R1:

На рис. 4.2 и 4.3 изображены допустимые множества решений обеих задач. Очевидно, что треугольник ОСА (рис. 4.2) - допустимое множество R - есть проекция допустимого множества R1 (рис.4.3) на подпространство .

В общем случае допустимое множество решений исходной задачи R есть проекция допустимого множества решений расширенной задачи R1 на подпространство исходных переменных .

 

 

Моделирование работы механического цеха.

Фирма производит две модели и сборных деталей. Их производство ограничено наличием сырья (листы металла) и временем машинной обработки. Для каждого изделия модели требуется листа металла, а для модели . Фирма может получать от своих поставщиков до металла в неделю. Для каждого изделия модели требуется 12 мин машинного времени, а для изделия модели — 30 мин. В неделю можно использовать 160 часов машинного времени.

Сколько изделий каждой модели следует выпускать фирме в неделю, если каждое изделие модели приносит 200 у.е. прибыли, а каждое изделие модели — 400 у.е. прибыли?

В данном случае объектом является фирма, а ее деятельность представляется в виде математической модели, т.е. учитываются только некоторые количественные стороны этой деятельности. Менеджер (субъект) ставит себе задачу: составить недельный производственный план фирмы. При этом он руководствуется целью моделирования — максимальной эффективностью производства, получением максимальной прибыли.

 

 


Поделиться:



Популярное:

  1. I. Предмет и задачи дидактики
  2. II. Предполагаемые союзники и их задачи
  3. III. Целевые установки, задачи и направления обеспечения транспортной безопасности
  4. Алгоритм решения задач линейного программирования с помощью Excel
  5. Алгоритм решения задач ЛП графическим методом
  6. Алгоритм решения транспортной задачи
  7. Анализ подходов и методов решения задачи
  8. Анализ современного состояния АПК в России: задачи и экономическая стратегия развития
  9. Анализ состава задач по проектированию трудовых процессов и нормированию труда и возможностей их автоматизации.
  10. БИЛЕТ 1. Цели, задачи и основные принципы православной педагогики. Сотериологический характер педагогических воззрений Святых Отцов Церкви
  11. БИЛЕТ 9. Вопрос 2. Психолого-педагогические задачи процесса духовно-нравственного становления личности на этапе вхождения в мир (наследство, зачатие, внутриутробное развитие, роды, новорожденность).
  12. Бухгалтерский учет: его задачи, функции и


Последнее изменение этой страницы: 2016-05-28; Просмотров: 892; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.01 с.)
Главная | Случайная страница | Обратная связь