Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Взаимосвязь термоэлектрических эффектов.⇐ ПредыдущаяСтр 14 из 14
Анализ работы и расчет термоэлектрических холодильных машин основан на взаимодействии термоэлектрических явлениях: Эффекта Зеебека, эффекта Пельтье, эффекта Томпсона и др. Эффект Зеебека заключается в том, что при поддержании различных температур на спаях двух полупроводников в цепи возникает термоэлектродвижущая сила и в цепи появляется электрический ток. На данном принципе основана работа термопар для измерения температур. ТермоЭДС на концах разомкнутой цепи определяется по уравнению
В том случае, когда термоэлектрическая цепь состоит из однородных полупроводников дырочной или электронной проводимости, их термоЭДС оказываются противоположно направленными. Тогда:
α р = α р1 - α р2,
α n = α n1 - α n2.
где α р и α n – коэффициенты термоЭДС дырочного и электронного полупроводников, Вт/К. Если термоэлектрическая батарея состоит из полупроводников различной проводимости, то их коэффициенты темоЭДС суммируется по абсолютным значениям, т.е.
Для цепи, состоящей из n последовательно соединенных пар плоупроводников, термоэлектродвижущая сила равна:
или для цепи из двух полупроводников
Δ Е = α (Тг – Тх)
Эффект Пельтье заключается в том, что при протекании электрического тока через два, спаянных между собой полупроводника, в местах спаев возникают различные температуры: один спай становится горячим, другой – холодным. Теплота, выделяемая или поглощаемая на горячем и холодном спаях, называется теплотой Пельтье. Теплота Пельтье определяется по формуле:
где П – коэффициент Пельтье; I – сила тока, А. Коэффициент Пельтье связан с эффектом Зеебека следующим соотношением
Тогда:
Эффект Томпсона заключается в поглощении теплоты по всей длине термоэлементов. Наличие разности температур вдоль материала батареи приводит к тому, что электроны на горячем спае приобретают более высокую энергию, чем на холодном. Эта разность потенциалов неодинакова и приводит к возникновению термоэлектродвижущей силы. При этом возникает тепловой поток Томпсона
где τ – коэффициент Томпсона. Для рассмотрения взаимодействия между термоэлектрическими эффектами термоэлектрическую холодильную машину можно представить как машину, в которой рабочим веществом является электрический ток (электрический газ). Термодинамический цикл в S-T – диаграмме холодильной машины, в которой отсутствуют дополнительные потери, показан на рисунке 7.1. Процесс 4-1 – процесс подвода теплоты Пельтье к холодному спаю; процесс 1-2 – процесс поглащения теплоты Томпсона полупроводником n-типа; процесс 2-3 – процесс отвода теплоты Пельтье от горячего спая; процесс 3-4 – процесс выделения теплоты Томпсона от полупроводника p-типа.
Рисунок 7.1 - Схема и цикл термоэлектрической холодильной машины.
В веществах с различными типами полупроводников эффект Томпсона практически равен нулю и в расчетах, как правило, не учитывается. Количество теплоты Пельтье, подведенное к холодному спаю или теоретическая холодопроизводительность машины:
Количество теплоты, отведенной от горячего спая:
Работа цикла 1234, которую совершает термоЭДС при протекании электрического тока, равна разности отведенной и подведенной теплоты к спаям, т.е.
Теоретический холодильный коэффициент цикла:
Таким образом, теоретический коэффициент цикла термоэлектрической холодильной машины равен холодильному коэффициенту цикла Карно. В действительности работа термоэлемента сопровождается необратимыми потерями. Во-первых, при протекании электрического тока по цепи в термобатареи, выделяется теплота Джоуля-Ленца:
где R – электрическое сопротивление термоэлементов, Ом. Считается, что в первом приближении Qдж распределяется между спаями поровну, т.е.:
Qхдж = Qгдж = 0, 5 Qдж
Во-вторых, за счет теплопроводности материала термобатареи, часть теплоты от горячего спая передаётся холодному спаю в количестве
С учетом потерь действительная холодопроизводительность термоэлектрической холодильной машины Qо.д и количество теплоты, отведенной от горячего спая Qг.д, будут равны:
Потребляемая мощность:
Действительный холодильный коэффициент
Важными режимами работы термоэлектрической холодильной машины является режим максимального холодильного коэффициента ε max, режим максимальной холодопроизводительности Qо.max и режим минимального тока Imin.
Популярное:
|
Последнее изменение этой страницы: 2016-05-28; Просмотров: 830; Нарушение авторского права страницы