Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основные электрофизические свойства



Основные электрофизические свойства важнейших полупроводниковых материалов (ширина запрещённой зоны, подвижность носителей тока, температура плавления и т. д.) представлены в табл. 1. Ширина запрещенной зоны DEg является одним из фундаментальных параметров полупроводниковых материалов. Чем больше DEg, тем выше допустимая рабочая температура и тем более сдвинут в коротковолновую область спектра рабочий диапазон приборов, создаваемых на основе соответствующих полупроводниковых материалов. Например, максимальная рабочая температура германиевых приборов не превышает 50-60 °C, для кремниевых приборов она возрастает до 150—170 °C, а для приборов на основе GaAs достигает 250—300 °C; длинноволновая граница собственной фотопроводимости составляет: для InSb — 5, 4 мкм (77 К), InAs — 3, 2 мкм (195 К), Ge — 1, 8 мкм (300 К), Si — 1 мкм (300 К), GaAs — 0, 92 мкм (300 К). Величина DEg хорошо коррелирует с температурой плавления. Обе эти величины возрастают с ростомэнергии связи атомов в кристаллической решётке, поэтому для широкозонных полупроводниковых материалов характерны высокие температуры плавления, что создает большие трудности на пути создания чистых и структурно совершенных монокристаллов таких полупроводниковых материалов. Подвижность носителей тока в значительной мере определяет частотные характеристики полупроводниковых приборов. Для создания приборов сверхвысокочастотного диапазона необходимы полупроводниковые материалы, обладающие высокими значениями m. Аналогичное требование предъявляется и к полупроводниковым материалам, используемым для изготовления фотоприемников. Температура плавления и период кристаллической решётки, а также коэффициент линейного термического расширения играют первостепенную роль при конструировании гетероэпитаксиальных композиций. Для создания совершенных гетероструктур желательно использовать полупроводниковые материалы, обладающие одинаковым типом кристаллической решётки и минимальными различиями в величинах её периода и коэффициентах термического расширения.Плотность полупроводниковых материалов определяет такие важные технические характеристики, как удельный расход материала, масса прибора.

Таблица 1. Основные свойства важнейших полупроводниковых материалов.

Элемент, тип соединения Наименование материала Ширина запрещенной зоны, эв Подвижность носителей заряда, 300 K, см2/(в× сек) Кристаллическая структура Постоянная решётки, A Температура плавления, °С Упругость пара при температуре плавления, атм
при 300 К при 0 К электроны дырки
Элемент С (алмаз) 5, 47 5, 51 алмаз 3, 56679 10− 9
Ge 0, 661 0, 89 типа алмаза 5, 65748  
Si 1, 12 1, 16 типа алмаза 5, 43086 10− 6
α -Sn   ~0, 08     типа алмаза 6, 4892    
IV—IV α -SiC 3, 1 типа сфалерита 4, 358  
III—V AISb 1, 63 1, 75 типа сфалерита 6, 1355 < 0, 02
BP       типа сфалерита 4, 538 > 1300 > 24
GaN 3, 39   типа вюртцита 3, 186 (по оси a) 5, 176 (по оси с) > 1700 > 200
GaSb 0, 726 0, 80 типа сфалерита 6, 0955 < 4·10− 4
GaAs 1, 424 1, 52 типа сфалерита 5, 6534
GaP 2, 27 2, 40 типа сфалерита 5, 4505
InSb 0, 17 0, 26 типа сфалерита 6, 4788 < 4·10− 5
InAs 0, 354 0, 46 типа сфалерита 6, 0585 0, 33
InP 1, 34 1, 34 типа сфалерита 5, 8688
II—VI CdS 2, 42 2, 56 типа вюртцита 4, 16 (по оси a) 6, 756 (по оси с)  
CdSe 1, 7 1, 85   типа сфалерита 6, 05  
ZnO 3, 36     кубич. 4, 58  
ZnS 3, 6 3, 7   типа вюртцита 3, 82 (по оси a) 6, 26 (по оси с)  
IV—VI PbS 0, 41 0, 34 кубич. 5, 935  
PbTe 0, 32 0, 24 кубич. 6, 460  

Получение

Необходимым условием достижения высоких электрофизических характеристик полупроводниковых материалов является их глубокая очистка от посторонних примесей. В случае Ge и Si эта проблема решается путём синтеза их летучих соединений (хлоридов, гидридов) и последующей глубокой очистки этих соединений с применением методов ректификации, сорбции, частичного гидролиза и специальных термических обработок. Хлориды особой чистоты подвергают затем высокотемпературному восстановлению водородом, прошедшим предварительную глубокую очистку, с осаждением восстановленных продуктов на кремниевых или германиевых прутках. Из очищенных гидридов Ge и Si выделяют путём термического разложения. В результате получают Ge и Si с суммарным содержанием остаточных электрически активных примесей на уровне 10− 7− 10− 9%. Получение особо чистых полупроводниковых соединений осуществляют синтезом из элементов, прошедших глубокую очистку. Суммарное содержание остаточных примесей в исходных материалах не превышает обычно 10− 4− 10− 5%. Синтез разлагающихся соединений проводят либо в запаянных кварцевых ампулах при контролируемом давлении паров летучего компонента в рабочем объёме, либо под слоем жидкого флюса (например, особо чистого обезвоженного В2О3). Синтез соединений, имеющих большое давление паров летучего компонента над расплавом, осуществляют в камерах высокого давления. Часто процесс синтеза совмещают с последующей дополнительной очисткой соединений путём направленной или зонной кристаллизации расплава.

Наиболее распространенный способ получения монокристаллов полупроводниковых материалов — вытягивание из расплава по методу Чохральского(Выращивание монокристаллов). Этим методом получают монокристаллы Ge, Si, соединения типа AIIIBV, AIIBVI, AIVBVI и т. д. Вытягивание монокристаллов неразлагающихся полупроводниковых материалов проводят в атмосфере Н2, инертных газов или в условиях глубокого вакуума. При выращивании монокристаллов разлагающихся соединений (InAs, GaAs, InP, GaP, CdTe, PbTe и др.) расплав герметизируют слоем жидкого флюса (В2О3) и вытягивают монокристаллы, погружая затравку в расплав через флюс и поддерживая в рабочем объёме над расплавом определённое давление инертного газа. Часто процесс вытягивания осуществляют в камерах высокого давления, совмещая процесс выращивания монокристаллов с предварительным синтезом соединений под слоем флюса (GaAs, InP, GaP и др.).

Для выращивания монокристаллов полупроводниковых материалов также широко используют методы направленной и зонной кристаллизации расплава в контейнере. В случае разлагающихся соединений для получения монокристаллов требуемого стехиометрического состава процесс проводят в запаянных кварцевых ампулах, поддерживая равновесное давление паров летучего компонента над расплавом; часто для этого требуются камеры высокого давления, в которых поддерживается противодавление инертного газа. При получении монокристаллов необходимой кристаллографической ориентации используют ориентированные соответствующим образом монокристаллические затравки.

Для выращивания монокристаллов полупроводниковых материалов, обладающих подходящим сочетанием плотности и поверхностного натяжения расплава, используют метод бестигельной зонной плавки. Наибольшее распространение этот метод получил в технологии получения монокристаллов Si, имеющего сравнительно невысокую плотность и достаточно большое поверхностное натяжение расплава. Отсутствие контакта расплава со стенками контейнера позволяет получать этим методом наиболее чистые монокристаллы. Обычно процесс выращивания монокристалла совмещают с предварительной дополнительной очисткой полупроводниковых материалов зонной плавкой.

Для получения монокристаллов ряда тугоплавких разлагающихся полупроводниковых соединений (например, CdS, ZnS, SiC, AlN и др.) используют кристаллизацию из газовой фазы (методы сублимации и химических транспортных реакций). В случае если при выращивании монокристаллов не удается получить соединение требуемого стехиометрического состава, кристаллы разрезают на пластины, которые подвергают дополнительному отжигу в парах недостающего компонента. Наиболее часто этот прием используют в технологии получения монокристаллов узкозонных соединений типа AIIBVI и AIVBVI, где собственные точечные дефекты сильно влияют на концентрацию и подвижность носителей тока, то есть проявляют высокую электрическую активность (PbTe, PbxSn1-xTe, CdxHg1-xTe и др.). При этом удается снизить концентрацию носителей заряда в кристаллах на несколько порядков. Для выращивания профилированных монокристаллов полупроводниковые материалы (ленты, прутки, трубы и т. д.) используют метод Степанова.

Широко распространено получение полупроводниковых материалов в виде монокристаллических пленок на разного рода монокристаллических подложках. Такие пленки называют эпитаксиальными, а процессы их получения — эпитаксиальным наращиванием. Если эпитаксиальная пленка наращивается на подложку того же вещества, то получаемые структуры называют гомоэпитаксиальными; при наращивании на подложку из другого материала — гетероэпитаксиальными. Возможности получения тонких и сверхтонких однослойных и многослойных структур разнообразной геометрии с широкой вариацией состава и электрофизических свойств по толщине и поверхности наращиваемого слоя, с резкими границами р-n-переходов и гетеропереходов обусловливают широкое использование методов эпитаксиального наращивания в микроэлектронике и интегральной оптике, в практике создания больших и быстродействующих интегральных схем, а также оптоэлектронных приборов (см. Планарная технология).

Для получения эпитаксиальных структур полупроводниковых материалов используют методы жидкостной, газофазной и молекулярно-пучковой эпитаксии. Методом жидкостной эпитаксии получают гомо- и гетероэпитаксиальные структуры на основе соединений типа AIIIBV, AIIBVI, AIVBVI и их твёрдых расплавов. В качестве растворителя обычно используют расплав нелетучего компонента соответствующего соединения. Наращивание эпитаксиального слоя проводят либо в режиме программируемого снижения температуры, либо из предварительно переохлажденного расплава. Этим методом можно воспроизводимо получать многослойные структуры с толщинами отдельных слоев до ~ 0, 1 мкм при толщинах переходных слоев на гетерограницах порядка десятков нм.

Легирование

Для получения полупроводниковых материалов электронного типа проводимости (n-типа) с изменяющейся в широких пределах концентрацией носителей заряда (электронов) обычно используют донорные примеси, образующие «мелкие» энергетические уровни в запрещенной зоне вблизи дна зоны проводимости (энергия ионизации ≤ 0, 05 эВ). Для полупроводниковых материалов дырочного типа проводимости (р-типа) аналогичная задача решается путём введения акцепторных примесей, образующих «мелкие» энергетические уровни в запрещенной зоне вблизи потолка валентной зоны. Такие примеси при комнатной температуре практически полностью ионизованы, так что их концентрация приблизительно равна концентрации носителей заряда, которая связана с подвижностями носителей соотношениями: sn = emnn для полупроводниковых материалов n-типа и sр = empp для полупроводниковых материалов р-типа (sn и sр — проводимость; mn и mр — подвижности электронов и дырок соответственно). Для Ge и Si основными донорными легирующими примесями являются элементы V гр. периодической системы: Р, As, Sb, a акцепторными — элементы III гр.: В, Al, Ga. Для соединений типа AIIIBV — соотв. примеси элементов VI гр. (S, Se, Те), а также Sn, и элементов II гр. (Be, Mg, Zn, Cd). Элементы IV гр. (Si, Ge) в зависимости от условий получения кристаллов и эпитаксиальных слоев соед. типа AIIIBV могут проявлять как донорные, так и акцепторные св-ва. В соед. типа AIIBVI и AIVBVIповедение вводимых примесей сильно осложняется присутствием собств. точечных структурных дефектов. Необходимые тип и величина проводимости в них обычно достигаются прецизионным регулированием отклонения состава от стехиометрического, обеспечивающего заданную концентрацию определённого типа собственных точечных дефектов структуры в кристаллах.

Перечисленные выше легирующие примеси образуют, как правило, твёрдые р-ры замещения и обладают достаточно высокой растворимостью (1018− 1020атомов/см³ ) в широком интервале температур. Растворимость их носит ретроградный характер, при этом максимум растворимости приходится на температурный интервал 700—900 °C в Ge, 1200—1350 °C в Si и 1100—1200 °C в GaAs. Эти примеси являются малоэффективными центрами рекомбинации носителей и сравнительно слабо влияют на величину их времени жизни.

Примеси тяжелых и благородных металлов (Fe, Ni, Cr, W, Cu, Ag, Аи и др.) в большинстве полупроводниковых материалов образуют глубокие, часто многозарядные донорные или акцепторные уровни в запрещенной зоне, имеют большие сечения захвата носителей заряда и являются эффективными центрами рекомбинации носителей, приводя к значительному снижению их времени жизни. Эти примеси обладают малой и обычно ярко выраженной ретроградной растворимостью в полупроводниковых материалах и имеют очень малые значения коэффициента распределения между кристаллом и расплавом. Легирование ими производят в тех случаях, когда надо получить полупроводниковые материалы с малым временем жизни носителей или с высоким удельным электрическим сопротивлением, достигаемым компенсацией мелких энергетических уровней противоположной природы. Последнее часто используют для получения полуизолирующих кристаллов широкозонных полупроводниковых материалов типа AIIIBV (GaAs, GaP, InP); легирующими примесями служат Cr, Fe, Ni. Основные характеристики наиболее распространенных примесей в важнейших полупроводниковых материалах представлены в табл. 2.

Легирование полупроводниковых материалов обычно осуществляют непосредственно в процессах получения монокристаллов и эпитаксиальных структур. Примесь вводится в расплав либо в виде элемента, либо в виде сплава с данным полупроводниковым материалом (лигатуры). Часто легирование осуществляют из газовой фазы (паров) данного элемента или его легколетучих соединений. Это основной способ легирования в процессах эпитаксии при кристаллизации из газовой фазы. При молекулярно-пучковой эпитаксии источником легирующей добавки обычно является сама элементарная примесь. Расчет необходимого содержания легирующей примеси требует знания точной количественной связи между её концентрацией и заданными свойствами полупроводниковых материалов, а также основных физико-химических характеристик примеси: коэффициента распределения между газовой фазой и кристаллом (К), упругости паров и скорости испарения в широком интервале температур, растворимости в твёрдой фазе и т. п.

Одна из главных задач легирования — обеспечение равномерного распределения вводимой примеси в объёме кристалла и по толщине эпитаксиального слоя. При направленной кристаллизации из расплава равномерное распределение примеси по длине слитка достигается либо путём поддержания её постоянной концентрации в расплаве за счёт его подпитки из твёрдой, жидкой или газовой фазы, либо путём программированного изменения эффективного коэффициента распределения примеси при соответствующем изменении параметров процесса роста. При зонной перекристаллизации для примесей с К < < 1 обычно используют целевую загрузку примеси в начальную расплавленную зону с последующим её проходом через всю заготовку. Эффективный способ повышения объемной однородности монокристаллов — воздействие на массоперенос в расплаве наложением магнитного поля. Однородного распределения примеси по толщине слоя в процессе жидкофазной эпитаксии достигают кристаллизацией при постоянной температуре в условиях подпитки расплава, а при газофазной эпитаксии — поддержанием постоянной концентрации легирующей примеси в газовой фазе над подложкой на протяжении всего процесса наращивания.

Легирование полупроводниковых материалов может быть осуществлено также путём радиационного воздействия на кристалл, когда в результате ядерных реакций с участием собственных атомов вещества образуются электрически активные примеси. Наибольший интерес для радиационного легирования представляет воздействие тепловыми нейтронами, которые обладают большой проникающей способностью, что обеспечивает повышенную однородность легирования. Концентрация примесей, образующихся в результате нейтронного облучения, определяется соотношением: Nпр = N0siCiсрt, где N0 — кол-во атомов в единице объёма полупроводникового материала; si — сечение поглощения тепловых нейтронов; Ci — содержание (%) соответствующего нуклидав естественной смеси; ср — плотность потока тепловых нейтронов; t — время облучения. Легирование облучением тепловыми нейтронами обеспечивает строго контролируемое введение заданных концентраций примеси и равномерное её распределение в объёме кристалла. Однако в процессе облучения в кристалле образуются радиационные дефекты, для устранения которых необходим последующий высокотемпературный отжиг. Кроме того, может появиться наведенная радиоактивность, требующая выдержки образцов после облучения. Легирование облучением тепловыми нейтронами обычно используют для получения однородно легированных фосфором монокристаллов Si с высоким удельным электрическим сопротивлением. В данном случае происходят следующие ядерные реакции:

При создании структур с p-n-переходами для полупроводниковых приборов широко используют легирование путём диффузионного введения примеси. Профиль концентрации примеси при диффузии описывается обычно функцией ошибок и имеет вид плавной кривой, характер которой определяется следующими факторами: температурой и временем проведения процесса; толщиной слоя, из которого осуществляется диффузия; концентрацией и формой нахождения примеси в источнике, а также её электрическим зарядом и возможностью взаимодействия с сопутствующими примесями и дефектами в полупроводниковом материале. Из-за малых значений коэффициента диффузии основных легирующих примесей диффузионное легирование обычно проводят при высоких температурах (для Si, например, при 1100—1350 °C) и в течение длительного времени; при этом оно, как правило, сопровождается генерированием в кристалле значительного количества структурных дефектов, в частности дислокаций. При диффузионном легировании возникают трудности в получении тонких легированных слоев и достаточно резких p-n-переходов.

Для получения тонких легированных слоев перспективны процессы ионного легирования (ионной имплантации), при которых введение примесных атомов в приповерхностный слой материала осуществляется путём бомбардировки соответствующими ионами с энергией от нескольких КэВ до нескольких МэВ. Возможность введения практически любой примеси в любой полупроводниковый материал, низкие рабочие температуры процесса, гибкое управление концентрацией и профилем распределения вводимой примеси, возможность легирования через диэлектрические покрытия с получением тонких, сильно легированных слоев обеспечили широкое распространение этого метода в технологии полупроводниковых приборов. Однако в процессе ионного легирования генерируются собственные точечные дефекты структуры, возникают области разупорядочения решётки, а при больших дозах — аморфизованные слои. Поэтому для получения качественных легированных слоев необходим последующий отжиг введенных дефектов. Отжиг проводят при температурах существенно более низких, чем при диффузии (для Si, например, не выше 700—800 °C). После отжига свойства имплантированных слоев близки к свойствам материала, легированного до тех же концентраций традиционными методами.

Структурные дефекты

Основными структурными дефектами в монокристаллах и эпитаксиальных слоях полупроводниковые материалы являются дислокации, собственные точечные дефекты и их скопления, дефекты упаковки. При выращивании монокристаллов дислокации возникают под действием термических напряжений, обусловленных неоднородным распределением температуры в объёме слитка. Другими источниками дислокаций в монокристаллах являются дислокации, прорастающие из затравки, примесные неоднородности, отклонения от стехиометрического состава. Часто дислокации образуют в кристаллах устойчивые скопления — малоугловые границы. Основными способами снижения плотности дислокаций в монокристаллах являются: уменьшение уровня термических напряжений путём подбора соответствующих тепловых условий выращивания, обеспечение равномерного распределения состава в объёме, строгий контроль стехиометрического состава, введение «упрочняющих» примесей, затрудняющих движение дислокаций и их размножение. В настоящее время даже в промышленных условиях выращивают бездислокационные монокристаллы Si диаметром до 250 мм. Успешно решается задача получения бездислокационных монокристаллов Ge, GaAs, InSb и др. полупроводниковых материалов.

В эпитаксиальных композициях основными источниками дислокаций являются: напряжения несоответствия, обусловленные различием периодов решётки сопрягающихся материалов; термические напряжения из-за различия коэф. термического расширения сопрягающихся материалов или неравномерного распределения температуры по толщине и поверхности наращиваемого слоя; наличие градиента состава по толщине эпитаксиального слоя. Особенно трудна задача получения малодислокационных гетерокомпозиций. Для снижения плотности дислокаций в рабочем слое заданного состава используют технику создания промежуточных по составу «градиентных» слоев или подбирают изопериодные (с близкими значениями периодов кристаллической решётки) гетеропары. При выращивании на монокристаллической подложке бинарных соединений для создания изопериодных гетеропар используют четверные твёрдые растворы, в состав которых входит и вещество подложки.

Важнейшими собственными точечными дефектами в Ge и Si являются вакансии и междоузельные атомы, а также различного рода комплексы, образующиеся в результате взаимодействия этих дефектов между собой или с атомами остаточных и легирующих примесей. В бинарных соединениях точечными дефектами могут быть вакансии в любой из подрешёток, междоузельные атомы обоих компонентов, которые могут находиться в решётке в различных положениях, атомы компонента В на местах атомов А и наоборот. Как и в элементарных полупроводниковых материалах, эти «простые» собственные точечные дефекты могут взаимодействовать между собой и с примесями с образованием разнообразных комплексов. Ещё более сложной выглядит картина образования дефектов в многокомпонентных соединениях и твёрдых расплавах. Собственные точечные дефекты образуются при нагреве, облучении частицами высоких энергий, пластичных деформациях; существенную роль играет отклонение состава от стехиометрического. Наиболее эффективными способами снижения концентрации собственных точечных дефектов в полупроводниковых материалах является термообработка в различных средах. В случае химических соединений термообработку обычно проводят в атмосфере паров недостающего компонента, выбирая рабочие температуры с учётом конфигурации области гомогенности.

Применение

Важнейшая область применения полупроводниковых материалов — микроэлектроника. Полупроводниковые материалы составляют основу современных больших и сверхбольших интегральных схем, которые делают главным образом на основе Si. Дальнейший прогресс в повышении быстродействия и в снижении потребляемой мощности связан с созданием интегральных схем на основе GaAs, InP и их твёрдых растворов с др. соединениями типа АIIIВV. В больших масштабах используют полупроводниковые материалы для изготовления «силовых» полупроводниковых приборов (вентили, тиристоры, мощные транзисторы). Здесь также основным материалом является Si, а дальнейшее продвижение в область более высоких рабочих температур связано с применением GaAs, SiC и др. широкозонных полупроводниковых материалов. С каждым годом расширяется применение полупроводниковых материалов в солнечной энергетике. Основными полупроводниковыми материалами для изготовления солнечных батарей являются Si, GaAs, гетероструктуры GaxAl1-xAs/GaAs, Cu2S/CdS, α -Si: H, гетероструктуры α -Si: H/α -SixC1-x: H. С применением в солнечных батареях некристаллических гидрированных полупроводниковых материалов связаны перспективы резкого снижения стоимости солнечных батарей. Полупроводниковые материалы используют для создания полупроводниковых лазеров и светодиодов. Лазеры делают на основе ряда прямозонных соединений типа AIIIBV, AIIBIV, AIVBVI и др. Важнейшими материалами для изготовления лазеров являются гетероструктуры: GaxAl1-xAs/GaAs, GaxIn1-xAsyP1-y/InP, GaxIn1-xAs/InP, GaxIn1-xAsyP1-y/GaxAs1-xPx, GaN/AlxGa1-xN. Для изготовления светодиодов широко используют: GaAs, GaP, GaAs1-xPx, GaxIn1-xAs, GaxAl1-xAs, GaN и др. Полупроводниковые материалы составляют основу современных приемников оптического излучения (фотоприемников) для широкого спектрального диапазона. Их изготовляют на основеGe, Si, GaAs, GaP, InSb, InAs, GaxAl1-xAs, GaxIn1-xAs, GaxIn1-xAsyP1-y, CdxHg1-xТе, PbxSn1-xTe и ряда др. полупроводниковых материалов. Полупроводниковые лазеры и фотоприемники — важнейшие составляющие элементной базы волоконно-оптической линий связи. Полупроводниковые материалы используются для создания различных СВЧ приборов (биполярных и полевых транзисторов, транзисторов на «горячих» электронах, лавинопролетных диодов и др.). Другие важные области применения полупроводниковых материалов: детекторы ядерных излучений (используют особо чистые Ge, Si, GaAs, CdTe и др.), изготовление термохолодильников (теллуриды и селениды висмута и сурьмы), тензодатчиков, высокочувствительных термометров, датчиков магнитных полей и др.

Полупроводниковые материалы

Полупроводнико́ вые материа́ лы, обширный класс материалов, проявляющих полупроводниковыесвойства. В него входят сотни самых разнообразных веществ — как элементов, так и химических соединений. По мнению основоположника полупроводникового материаловедения акад. А. Ф. Иоффе, «полупроводники — это почти весь окружающий нас неорганический мир». Несмотря на существенные различия в строении и химическом составе, материалы этого класса роднит одно качество — способность сильно изменять свои электрические свойства под влиянием небольших внешних энергетических воздействий. Полупроводниковые свойства проявляют не только неорганические вещества, существует обширный класс органических полупроводников.

По химическому составу полупроводниковые материалы разделяют на простые элементарные полупроводники и сложные полупроводники - полупроводниковые соединения. Широкое применение в полупроводниковой промышленности находят не только монокристаллические, но и поликристаллические полупроводники, а также аморфные и стеклообразные полупроводники.

Простыми полупроводниковыми материалами являются 12 химических элементов, находящихся в средней части Периодической системы Д. И. Менделеева. Наиболее широкое применение среди этой группы имеют кремний, германий и селен (см. элементарные полупроводниковые материалы).

Весьма обширна группа полупроводниковых неорганических соединений, которые могут состоять из двух, трех и большего числа элементов.

Известные в 1940-х гг. полупроводники германий и кремний имели тетраэдрическую структуру, в которой на каждый атом приходится 4 химические связи. Предположение о том, что объединение одного атома с четырьмя другими (алмазоподобная структура), благоприятствует возникновению полупроводниковых свойств, подтвердилось. Представление о «средней четырехвалентности» и «алмазоподобных» полупроводниках оказалось плодотворным для поиска новых полупроводниковых материалов. Многие из алмазоподобных полупроводников образуют твердые растворы, которые также являются полупроводниками, например Ge - Si, GaAs - GaP и др.

К алмазоподобным полупроводникам принадлежит большинство важнейших неорганических кристаллических материалов. Бинарные и тройные соединения, у которых на один атом приходится четыре электрона, также обладают полупроводниковыми свойствами. К ним относятся бинарные соединения, образованные атомами из групп периодической системы элементов, равноотстоящих от центральной IV группы таблицы Д. И. Менделеева, названные соединениями типа AIBVII, AIIBVI, AIIIBV. Из многочисленных групп тройных соединений полупроводниковые свойства обнаружены у группы AIIBIVCV2 (ZnSnP2, CdGeAs2 и т.п.), также подчиняющейся правилу «четыре электрона на один атом»: (2+4+5*2)/4=4.

Химические соединения получили название сложных полупроводников. Они обозначаются прописными индексами латинского алфавита с верхними и нижними индексами. Верхние индексы применяют для обозначения римскими цифрами номеров групп периодической системы элементов, а нижние — для обозначения арабскими цифрами стехиометрических коэффициентов (числа атомов в соединении). Бинарные соединения называют обычно по наименованию того элемента (компонента соединения), у которого металлические свойства выражены слабее (например, соединение индия с фосфором InP называют фосфидом индия, цинка с серой ZnS — сульфидом цинка и т.д.)

В качестве примеров таких соединений можно привести InSb, Bi2Te3, ZnSiAs2, CuAlS2, CuGe2P3.

Во многих случаях полупроводниковыми свойствами обладают не только простые и сложные полупроводники, но и твердые растворы замещения, образующиеся между ними. Их выражают формулами, в которых нижними индексами x, y и др. обозначают атомную долю элемента в твердом растворе. Например, твердый раствор между кремнием и германием в общем виде выражают формулой SixGe1-x, а между фосфидом индия и арсенидом галлия InxGa1-xAsyP1-y. В твердых растворах путем изменения состава можно плавно и в достаточно широких пределах управлять важнейшими свойствами полупроводников, в частности, шириной запрещенной зоны и подвижностью носителей заряда.

Полупроводниковые материалы характеризуются следующими основными электрофизическими параметрами: удельным сопротивлением, типом проводимости, шириной запрещенной зоны, концентрацией носителей заряда и их подвижностью, эффективной массой и временем жизни. Ряд характеристик полупроводниковых материалов, например, ширина запрещенной зоны и эффективная масса носителей, относительно слабо зависит от концентрации химических примесей и степени совершенства кристаллической решетки. Однако, большинство параметров структурно чувствительны, и в полупроводниковых материалах наблюдается резкая зависимость свойств, прежде всего электрофизических, не только от содержания посторонних примесей, но и от степени совершенства кристаллического строения. Точечные Дефекты, как собственные, так и легирующие примеси, определяют концентрацию, тип проводимости, величину удельного сопротивления.Легирование полупроводниковых материалов осуществляется с целью получения кристаллов с необходимыми свойствами. Задаваемые свойства варьируются в очень широких пределах и при этом, как правило, необходимо выращивать кристаллы с определенным сочетанием различных свойств (например, оптических и электрофизических), с учетом высокой однородности распределения последних в объеме.

Характер распределения дислокаций и их плотность лимитируются в связи с негативным влиянием дислокаций на многие характеристики полупроводниковых приборов. Точечные дефекты, дислокации, дефекты упаковки и другие нарушения структуры управляют процессами диффузии в материале. Дефекты структуры оказывают существенное влияние на характеристики, а также эксплуатационную надежность полупроводниковых приборов. В связи с этим к совершенству структуры полупроводников предъявляются исключительно высокие требования. В большинстве случаев при выращивании кристаллов ставится задача получения кристаллов с высокой степенью структурного совершенства.

Требования, предъявляемые к конкретному материалу, определяются его приборным применением. Для создания сверхбольших интегральных схем необходимы кристаллы большого диаметра. Качество создаваемых микроэлектронных устройств в значительной степени зависит от совершенства исходных монокристаллов —кремния, арсенида галлия, фосфида индия. Помимо необходимых электрофизических параметров (концентрация носителей заряда, тип проводимости, удельное сопротивление), монокристаллы должны иметь низкую плотность дислокаций (в случае кремния — бездислокационные), и быть однородными по составу.

Полупроводниковые материалы больших диаметров выращивают из расплавов (см. Методы выращивания кристаллов). Основных методом их получения является метод Чохральского. В технологии кремния также используется метод бестигельной зонной плавки, а в технологии полупроводниковых соединений — метод направленной кристаллизации. Основными структурными дефектами в монокристаллах полупроводников являются дислокации, примесные неоднородности, микродефекты, собственные точечные дефекты структуры и их скопления.

Развитие полупроводниковой опто- и микроэлектроники привело к широкому использованию полупроводниковых соединений. Взаимодействие различных соединений друг с другом приводит к образованию твердых растворов, что дает возможность путем изменения состава раствора получать материалы с заранее заданными свойствами. Основным методом получения таких структур являетсяэпитаксия. Различные методы эпитаксии позволяют получать тонкие и сверхтонкие однослойные и многослойные полупроводниковые структуры разнообразной геометрии с широкой вариацией состава и электрофизических свойств по толщине и поверхности наращиваемого слоя. Применение в микроэлектронике и оптоэлектронных устройствах гетероэпитаксиальных структур позволяет создавать сложнейшие многослойные эпитаксиальные композиции с заданными параметрами.


Поделиться:



Популярное:

  1. Delphi. Основные характеристики и терминология
  2. I. Основные профессиональные способности людей (Уровень 4)
  3. II. ОСНОВНЫЕ ЖАЛОБЫ БОЛЬНОГО
  4. II. Основные расчетные величины индивидуального пожарного риска
  5. VIII. Основные направления просветительской, популяризаторской и коммуникативной деятельности библиотек
  6. XVI. Основные правовые системы современности.
  7. А. Жизненный цикл продукта и его основные стадии. Оценка конкурентоспособности продукта
  8. Авторитарный режим: основные черты и виды
  9. АДАПТАЦИИ К ПАРАЗИТИЧЕСКОМУ ОБРАЗУ ЖИЗНИ. ОСНОВНЫЕ ТЕНДЕНЦИИ
  10. Анатомо-физиологические особенности кроветворения, классификация, основные синдромы.
  11. Анатомо-физиологические особенности, основные синдромы и классификация
  12. Архитектура Возрождения. Классические традиции. Центрические храмы, базилики. Городские дворцы и виллы. Основные мастера. Скульптура эпохи Возрождения.


Последнее изменение этой страницы: 2016-05-29; Просмотров: 2253; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.034 с.)
Главная | Случайная страница | Обратная связь