Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ИСТОЧНИКИ ШУМА И ИХ ШУМОВЫЕ ХАРАКТЕРИСТИКИСтр 1 из 4Следующая ⇒
ЗАЩИТА ОТ ШУМА
SOUND PROTECTION
СНиП 23-03-2003
УДК [69+628.517.2] (083.75) Дата введения 2004—01—01
ПРЕДИСЛОВИЕ
1 РАЗРАБОТАНЫ Научно-исследовательским институтом строительной физики (НИИСФ) РААСН
2 ВНЕСЕНЫ Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России
3 ПРИНЯТЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ постановлением Госстроя России от 30 июня 2003 г. № 136 (не прошел государственную регистрацию - Письмо Минюста РФ от 15.04.2004 № 07/3892-ЮД)
4 ВЗАМЕН СНиП II-12-77
ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящие нормы и правила устанавливают обязательные требования, которые должны выполняться при проектировании, строительстве и эксплуатации зданий различного назначения, планировке и застройке населенных мест с целью защиты от шума и обеспечения нормативных параметров акустической среды в производственных, жилых, общественных зданиях и на территории жилой застройки.
НОРМАТИВНЫЕ ССЫЛКИ
В настоящих нормах и правилах приведены ссылки на следующие нормативные документы: ГОСТ 12.1.023-80 ССБТ. Шум. Методы установления значений шумовых характеристик стационарных машин ГОСТ 17187—81 Шумомеры. Общие технические требования и методы испытаний ГОСТ 27296—87 Защита от шума в строительстве. Звукоизоляция ограждающих конструкций зданий. Методы измерения СНиП 2.07.01-89* Градостроительство. Планировка и застройка городских и сельских поселений СП 23-103-2003 Проектирование звукоизоляции ограждающих конструкций жилых и общественных зданий
ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
Термины с соответствующими определениями, применяемые в настоящих нормах и правилах, приведены в приложении А.
ОБЩИЕ ПОЛОЖЕНИЯ 4.1 Защита от шума строительно-акустическими методами должна обеспечиваться: а) на рабочих местах промышленных предприятий: рациональным с акустической точки зрения решением генерального плана объекта, рациональным архитектурно-планировочным решением зданий; применением ограждающих конструкций зданий с требуемой звукоизоляцией; применением звукопоглощающих конструкций (звукопоглощающих облицовок, кулис, штучных поглотителей); применением звукоизолирующих кабин наблюдения и дистанционного управления; применением звукоизолирующих кожухов на шумных агрегатах; применением акустических экранов; применением глушителей шума в системах вентиляции, кондиционирования воздуха и в аэрогазодинамических установках; виброизоляцией технологического оборудования; б) в помещениях жилых и общественных зданий: рациональным архитектурно-планировочным решением здания; применением ограждающих конструкций, обеспечивающих нормативную звукоизоляцию; применением звукопоглощающих облицовок (в помещениях общественных зданий); применением глушителей шума в системах принудительной вентиляции и кондиционирования воздуха; виброизоляцией инженерного и санитарно-технического оборудования зданий; в) на территории жилой застройки: соблюдением санитарно-защитных зон (по фактору шума) промышленных и энергетических предприятий, автомобильных и железных дорог, аэропортов, предприятий транспорта (сортировочных станций, трамвайных депо, автобусных парков); применением рациональных приемов планировки и застройки жилых кварталов и районов; применением шумозащитных зданий; применением придорожных шумозащитных экранов; применением шумозащитных полос зеленых насаждений. 4.2 Акустическое благоустройство, создание оптимальных акустических условий в аудиториях, зрительных залах театров, кинотеатров, дворцов культуры, спортивных залах, залах ожидания и операционных залах железнодорожных, аэро- и автовокзалов должно обеспечиваться: рациональным объемно-планировочным решением зала (объем, соотношение линейных размеров); применением звукопоглощающих материалов и конструкций; применением звукоотражающих и звукорассеивающих конструкций; применением ограждающих конструкций, обеспечивающих требуемую звукоизоляцию от внутренних и внешних источников шума; применением глушителей шума в системах принудительной вентиляции и кондиционирования воздуха; применением систем звукоусиления, оповещения и передачи информации. 4.3 В проектах должны быть предусмотрены мероприятия по защите от шума: в разделе «Технологические решения» (для производственных предприятий) при выборе технологического оборудования следует отдавать предпочтение малошумному оборудованию, шумовые характеристики которого установлены в соответствии с ГОСТ 12.1.023. Размещение технологического оборудования должно осуществляться с учетом снижения шума на рабочих местах в помещениях и на территориях путем применения рациональных архитектурно-планировочных решений; в разделе «Строительные решения» (для производственных предприятий) на основе акустического расчета ожидаемого шума на рабочих местах должны быть, в случае необходимости, рассчитаны и запроектированы строительно-акустические мероприятия по защите от шума; в разделе «Архитектурно-строительные решения» объектов жилищно-гражданского строительства на основе расчета звукоизоляции ограждающих конструкций зданий должны быть обоснованы их проектные решения; в разделе «Инженерное оборудование» на основе расчета по вибро- и звукоизоляции инженерного оборудования должны быть обоснованы соответствующие проектные решения. 4.4 Раздел «Защита от шума» должен включаться в состав проектной градостроительной документации по планировке и застройке городов, поселков, сельских населенных пунктов, а также отдельных микрорайонов городов в соответствии со СНиП 2.07.01. Данный раздел должен включать в себя: на стадии технико-экономических основ развития города (ТЭО), генерального плана города, населенного пункта — карты шума улично-дорожной сети, железных дорог, водного и воздушного транспорта, промышленных зон и отдельных промышленных и энергетических объектов; на стадии проекта планировки промышленной зоны города и генерального плана группы предприятий — карты шума промышленных предприятий, архитектурно-планировочные и строительно-акустические мероприятия по снижению воздействия шума на селитебную территорию; на стадии проекта детальной планировки района города — карты шума на территории, расчеты ожидаемого шума у фасадов зданий (жилых, административных, детских дошкольных учреждений, школ, больниц), на площадках отдыха; типы и расположение шумозащитных зданий на магистральных улицах; устройство шумозащитных экранов на участках скоростных дорог; устройство шумозащитных полос зеленых насаждений; применение шумозащитных окон на фасадах зданий, обращенных в сторону магистральных улиц. 4.5 Акустический расчет должен производиться в следующей последовательности: выявление источников шума и определение их шумовых характеристик; выбор точек в помещениях и на территориях, для которых необходимо провести расчет (расчетных точек); определение путей распространения шума от источника (источников) до расчетных точек и потерь звуковой энергии по каждому из путей (снижение за счет расстояния, экранирования, звукоизоляции ограждающих конструкций, звукопоглощения и др.); определение ожидаемых уровней шума в расчетных точках; определение требуемого снижения уровней шума на основе сопоставления ожидаемых уровней шума с допустимыми значениями; разработка мероприятий по обеспечению требуемого снижения шума; поверочный расчет ожидаемых уровней шума в расчетных точках с учетом выполнения строительно-акустических мероприятий. 4.6 Акустический расчет следует проводить по уровням звукового давления L, дБ, в восьми октавных полосах частот со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц или по уровням звука по частотной коррекции «А» LA, дБА. Расчет проводят с точностью до 0, 1 децибела, окончательный результат округляют до целых значений. 4.7 В проектах защиты от шума должны быть определены технико-экономические показатели принятых решений. 4.8 Используемые в проектах звукоизоляционные, звукопоглощающие, вибродемпфирующие материалы должны иметь соответствующие пожарные и гигиенические сертификаты.
НОРМЫ ДОПУСТИМОГО ШУМА
6.1 Нормируемыми параметрами постоянного шума в расчетных точках являются уровни звукового давления L, дБ, в октавных полосах частот со среднегеометрическими частотами 31, 5; 63; 125; 250; 500; 1000; 2000; 4000 и 8000 Гц. Для ориентировочных расчетов допускается использование уровней звука LA, дБА. 6.2 Нормируемыми параметрами непостоянного (прерывистого, колеблющегося во времени) шума являются эквивалентные уровни звукового давления Lэкв, дБ, и максимальные уровни звукового давления Lмакс, дБ, в октавных полосах частот со среднегеометрическими частотами 31, 5; 63; 125; 250; 500; 1000; 2000; 4000 и 8000 Гц. Допускается использовать эквивалентные уровни звука LАэкв, дБА, и максимальные уровни звука LAмакс, дБА. Шум считают в пределах нормы, когда он как по эквивалентному, так и по максимальному уровню не превышает установленные нормативные значения.
Таблица 1
6.3 Допустимые уровни звукового давления L, дБ (эквивалентные уровни звукового давления, дБ), допустимые эквивалентные и максимальные уровни звука на рабочих местах в производственных и вспомогательных зданиях, на площадках промышленных предприятий, в помещениях жилых и общественных зданий и на территориях жилой застройки следует принимать по таблице 1. 6.4 Нормативные требования по уровням шума в жилых и общественных зданиях установлены для различных категорий: категория А — обеспечение высококомфортных условий; категория Б — обеспечение комфортных условий; категория В — обеспечение предельно допустимых условий. Категорию здания устанавливают техническим заданием на проектирование. К гостиницам категории А относятся гостиницы, имеющие по международной классификации четыре и пять звезд, к категории Б — три звезды, к категории В — менее трех звезд.
РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ, ОБЕСПЕЧИВАЮЩИХ НОРМАТИВНУЮ ЗВУКОИЗОЛЯЦИЮ
9.11 Элементы ограждений рекомендуется проектировать из материалов с плотной структурой, не имеющей сквозных пор. Ограждения, выполненные из материалов со сквозной пористостью, должны иметь наружные слои из плотного материала, бетона или раствора. Внутренние стены и перегородки из кирпича, керамических и шлакобетонных блоков рекомендуется проектировать с заполнением швов на всю толщину (без пустошовки) и оштукатуренными с двух сторон безусадочным раствором. 9.12 Ограждающие конструкции необходимо проектировать так, чтобы в процессе строительства и эксплуатации в их стыках не было и не возникло даже минимальных сквозных щелей и трещин. Возникающие в процессе строительства щели и трещины после их расчистки должны устраняться конструктивными мерами и заделкой невысыхающими герметиками и другими материалами на всю глубину.
МЕЖДУЭТАЖНЫЕ ПЕРЕКРЫТИЯ 9.13 Пол на звукоизоляционном слое (прокладках) не должен иметь жестких связей (звуковых мостиков) с несущей частью перекрытия, стенами и другими конструкциями здания, т.е. должен быть «плавающим». Деревянный пол или плавающее бетонное основание пола (стяжка) должны быть отделены по контуру от стен и других конструкций здания зазорами шириной 1—2 см, заполняемыми звукоизоляционным материалом или изделием, например, мягкой древесно-волокнистой плитой, погонажными изделиями из пористого полиэтилена и т.п. Плинтусы или галтели следует крепить только к полу или только к стене. Примыкание конструкции пола на звукоизоляционном слое к стене или перегородке показано на рисунке 2.
1 — несущая часть междуэтажного перекрытия; 2 — бетонное основание пола; 3 — покрытие пола; 4 — прокладка (слой) из звукоизоляционного материала; 5 — гибкий пластмассовый плинтус; 6 — стена; 7 — деревянная галтель; 8 — дощатый пол на лагах
Рисунок 2 — Схема конструктивного решения узла примыкания пола на звукоизоляционном слое к стене (перегородке)
При проектировании пола с основанием в виде монолитной плавающей стяжки следует располагать по звукоизоляционному слою сплошной гидроизоляционный слой (например, пергамин, гидроизол, рубероид и т.п.) с перехлестыванием в стыках не менее 20 см. В стыках звукоизоляционных плит (матов) не должно быть щелей и зазоров. 9.14 В конструкциях перекрытий, не имеющих запаса звукоизоляции, не рекомендуется применение покрытий полов из линолеума на волокнистой подоснове, снижающих изоляцию воздушного шума на 1 дБ по индексу Rw. Допускается применение линолеума со вспененными слоями, которые не влияют на изоляцию воздушного шума и могут обеспечивать необходимую изоляцию ударного шума при соответствующих параметрах вспененных слоев. 9.15 Междуэтажные перекрытия с повышенными требованиями к изоляции воздушного шума (Rw = 57—62 дБ), разделяющие жилые и встроенные шумные помещения, следует проектировать, как правило, с использованием плит из монолитного железобетона достаточной толщины (например, каркасно-монолитная или монолитная конструкция первого этажа). Достаточность звукоизоляции такой конструкции определяют расчетом. Другим возможным конструктивным вариантом при размещении шумных помещений в первых нежилых этажах является устройство промежуточного (технического) 2-го этажа. При этом также необходимо выполнить расчеты, подтверждающие достаточную звукоизоляцию жилых помещений. Во всех случаях размещения в первых нежилых этажах помещений с источниками шума рекомендуется устройство в них подвесных потолков, значительно увеличивающих звукоизоляцию перекрытий.
СТЫКИ И УЗЛЫ 9.19 Стыки между внутренними ограждающими конструкциями, а также между ними и другими примыкающими конструкциями должны быть запроектированы таким образом, чтобы в них при строительстве отсутствовали и в процессе эксплуатации здания не возникали сквозные трещины, щели и неплотности, которые резко снижают звукоизоляцию ограждений. Стыки, в которых в процессе эксплуатации, несмотря на принятые конструктивные меры, возможны взаимное перемещение стыкуемых элементов под воздействием нагрузки, температурные и усадочные деформации, следует конструировать с применением долговечных герметизирующих упругих материалов и изделий, приклеиваемых к стыкуемым поверхностям. 9.20 Стыки между несущими элементами стен и опирающимися на них перекрытиями следует проектировать с заполнением раствором или бетоном. Если в результате нагрузок или других воздействий возможно раскрытие швов, при проектировании должны быть предусмотрены меры, не допускающие образования в стыках сквозных трещин. Стыки между несущими элементами внутренних стен проектируют, как правило, с заполнением раствором или бетоном. Сопрягаемые поверхности стыкуемых элементов должны образовывать полость (колодец), поперечные размеры которой обеспечивают возможность плотного заполнения ее монтажным бетоном или раствором на всю высоту элемента. Необходимо предусмотреть меры, ограничивающие взаимное перемещение стыкуемых элементов (устройство шпонок, сварка закладных деталей и т.д.). Соединительные детали, выпуски арматуры и т.п. не должны препятствовать заполнению полости стыка бетоном или раствором. Заполнение стыков рекомендуется производить безусадочным (расширяющимся) бетоном или раствором. При проектировании сборных элементов конструкций необходимо принимать такую конфигурацию и размеры стыкуемых участков, которые обеспечивают размещение, наклейку, фиксацию и требуемое обжатие герметизирующих материалов и изделий, когда их применение предусмотрено.
ЭКРАНЫ И ВЫГОРОДКИ 10.8 Экраны следует применять для снижения уровней звукового давления на рабочих местах в зоне действия прямого звука (7.5) и в промежуточной зоне. Устанавливать экраны следует по возможности ближе к источнику шума. 10.9 Экраны следует изготавливать из твердых листовых материалов или отдельных щитов с обязательной облицовкой звукопоглощающими материалами поверхности, обращенной в сторону источника шума. Дополнительное звукопоглощение, вносимое экранами, следует учитывать при определении акустической постоянной помещения В по формуле (2), эквивалентной площади поглощения А — по формуле (3) и среднего коэффициента звукопоглощения acp — по формуле (4). 10.10 Экраны могут быть в плане плоскими (рисунок 5, а) и П-образной формы (рисунок 5, б), в этом случае их эффективность повышается. Если экран окружает источник шума, он превращается в выгородку (рисунок 5, в), в этом случае его эффективность приближается к эффективности бесконечного экрана с высотой Н. Линейные размеры экранов должны быть по крайней мере в три раза больше линейных размеров источника шума.
АКУСТИКА ЗАЛОВ
13.1 Процесс акустического проектирования зальных помещений должен включать: выбор габаритов и формы помещения при соблюдении общих требований к объемно-планировочному решению залов; проверку достоверности глобальной оценки акустики зала по статистической теории; расчет частотной характеристики времени реверберации зала для выявления соответствия его объемному оптимуму (рисунок 6) и проведение необходимой коррекции проекта в части конструкций ограждений;
1 — залы для ораторий и органной музыки; 2 — залы для симфонической музыки; 3 — залы для камерной музыки, залы оперных театров; 4 — залы многоцелевого назначения, залы музыкально-драматических театров, спортивные залы; 5 — лекционные залы, залы заседаний, залы драматических театров, кинозалы, пассажирские залы
Рисунок 6 — Рекомендуемое время реверберации на средних частотах (500—1000 Гц) для залов различного назначения в зависимости от их объема
графический анализ чертежей зала с необходимой коррекцией проекта в части формы и очертаний его ограждений; разработку мероприятий по улучшению диффузности звукового поля в зале; расчет локальных акустических критериев на предмет соответствия их зонам оптимумов с дополнительной, в случае необходимости, коррекцией проекта; оценку шумового режима зала с разработкой необходимых мероприятий по его улучшению; оценку электроакустического режима зала с разработкой необходимых мероприятий. 13.2 В каждом зале должны быть выдержаны основные требования к его объемно-планировочному решению, дифференцированные в зависимости от конкретного назначения зала следующим образом: удельный воздушный объем на одно зрительское место должен составлять, м3: в залах драматических театров, аудиториях и в конференц-залах:........................... 4—5; в залах музыкально-драматических театров (оперетта)................................................ 5—7; в залах театров оперы и балета............................................................................................. 6—8; в концертных залах камерной музыки................................................................................. 6—8; в концертных залах симфонической музыки...................................................................... 8—10; в залах для хоровых и органных концертов...................................................................... 10—12; в многоцелевых залах............................................................................................................... 4—6; в концертных залах современной эстрадной музыки (киноконцертных залах)...... 4—6; максимальная длина залов Lдоп, должна составлять, м: в залах драматических театров, аудиториях и конференц-залах............................... 24—25; в театрах оперетты.................................................................................................................... 28—29; в театрах оперы и балета........................................................................................................ 30—32; в концертных залах камерной музыки................................................................................. 20—22; в концертных залах симфонической музыки, хоровых и органных концертов....... 42—46; в многоцелевых залах вместимостью более 1000 мест................................................... 30—34; в концертных залах современной эстрадной музыки...................................................... 48—50 Для получения достаточной диффузности звукового поля следует правильно выбрать форму и пропорцию зала. Основные размеры и пропорции зала должны выбираться из следующих условий: L £ Lдоп; B = Sп/L; Н = V/Sп; 1 < L/B < 2; 1 < В/Н < 2, где L — длина зала по его центральной оси, м; Lдоп — предельно допустимая длина зала, м; В и Н — соответственно средние ширина и высота зала, м; V — общий воздушный объем зала, м3; Sп — площадь пола зала, м2. Прямоугольная форма в плане с плоским горизонтальным потолком допустима только для небольших лекционных залов вместимостью до 200 человек. Во всех других случаях зрительных залов оптимальной формой плана является трапециевидная с углом раскрытия 10—12°. Наличие параллельных плоских поверхностей несет опасность появления «порхающего уха», криволинейных вогнутых — фокусирования звука. 13.3 Для проверки допустимости применения в расчетах характеристик исследуемого зала методов статистической акустики в нормируемом диапазоне частот 125—4000 Гц следует рассчитать критическую частоту, Гц, выше которой наблюдается достаточное количество собственных мод (частот) воздушного объема, по формуле . (31) Если расчет показал, что fкр £ 125 Гц, то время реверберации, с, в зале следует определить в шести октавных полосах частот со среднегеометрическими частотами 125, 250, 500, 1000, 2000 и 4000 Гц: в диапазоне 125 — 1000 Гц по формуле ; (32) в диапазоне 2000 — 4000 Гц по формуле ; (33) где V — объем зала, м3; aср — средний коэффициент звукопоглощения в зале, определяют по формуле (4); S — общая площадь ограждающих конструкций в зале, м2; п — коэффициент, учитывающий поглощение звука в воздухе. В октаве 2000 Гц п = 0, 009; в октаве 4000 Гц п = 0, 022. При определении суммарной величины эквивалентной площади звукопоглощения по формуле (3) следует считать заполнение зрительских мест 70 %. Оптимальные значения времени реверберации в области средних частот 500—1000 Гц для залов различного назначения в зависимости от их объема приведены на рисунке 6. Допустимое отклонение от приведенных величин — ± 10 %. Кроме того, в октавной полосе 125 Гц допускается превышение величин времени реверберации, но не более 20 %. Если время реверберации зала, по крайней мере, в одной из частотных полос Tfi, отличается от Tопт, то следует внести некоторые изменения в конструктивные решения для того, чтобы приблизить Tfi к Топт. При fкр > 125Гц результат, полученный по формуле (31) для октавной полосы 125 Гц, следует считать ориентировочным. 13.4 Целью графического анализа чертежей зала является проверка равномерности поступления в зоны слушательских мест первых отражений от стен и потолка с допустимыми запаздываниями Dt: 20—25 мс для речи и 30—35 мс — для музыки. Все построения проводятся по законам лучевой (геометрической) оптики. Запаздывание первых отражений Dt, мс, определяют по формуле , (34) где lотр — длина пути отраженного звука, м; lпр — длина пути прямого звука, м; с — скорость звука в воздухе (с = 340 м/с). Перед началом построений каждая из исследуемых отражающих поверхностей при заданных положениях источника и приемника звука должна пройти проверку на допустимость использования ее для построения звуковых отражений. Допустимость применения геометрических отражений зависит от длины звуковой волны, размеров отражающей поверхности и ее расположения по отношению к источнику звука и точке приема. Применение геометрических отражений можно считать допустимым, если наименьшая сторона отражателя не менее чем 1, 5—2, 0 м. Радиус действия прямого звука rпр составляет для речи 8—9 м, для музыки — 10—12 м. На зрительских местах в пределах rпр усиление прямого звука с помощью отражений не требуется. Начиная с rпр интенсивные первые отражения должны перекрывать всю зону зрительских мест. Если поверхности стен или потолка состоят из отдельных секций, следует конфигурацию членений выполнять так, чтобы отражения от соседних элементов перекрывали друг друга, не оставляя «мертвых зон», лишенных отраженного звука. В залах с относительно большой высотой и шириной наибольшая опасность прихода первых отражений с недопустимым запаздыванием возникает в первых рядах зрительских мест. Для исправления этого явления следует выполнять специальные звукоотражающие конструкции на потолке и стенах в припортальной зоне. Принципиальная схема таких конструкций приведена на рисунке 7. 13.5 После завершения графического анализа чертежей и создания в зале оптимальной структуры ранних отражений не занятые для этой цели поверхности должны быть использованы для формирования диффузного звукового поля путем их эффективного расчленения различной формы звукорассеивающими элементами для создания рассеянного, ненаправленного отражения звука. Это достигается расчленением поверхностей балконами, пилястрами, нишами и тому подобными неровностями. Гладкие большие поверхности не способствуют достижению хорошей диффузности звукового поля. Особенно нежелательны гладкие, параллельные друг другу плоскости, вызывающие эффект «порхающего эха», получающегося в результате многократного отражения звука между ними. Расчленение таких стен ослабляет этот эффект и увеличивает диффузность. Причем хорошо рассеиваются звуковые волны, длина которых близка к размерам детали. Рассеивающий эффект увеличивается, если шаг членений нерегулярен, т.е. расстояния между смежными членениями не одинаковы по всей расчлененной поверхности. Балконы, ложи и скошенные стены повышают диффузность поля на низких частотах. Практически применяемые в архитектурной практике пилястры — в основном в области средних и высоких частот. Популярное:
|
Последнее изменение этой страницы: 2016-05-29; Просмотров: 574; Нарушение авторского права страницы