Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Приёмы устранения технических противоречий
Такой новый подход появился в рамках ТРИЗ. Изобретательские задачи в ТРИЗ стали представляться как выявленные противоречия. При этом оказалось, что огромное количество разнообразных задач можно свести к ограниченному количеству противоречий. И обобщённые принципы (приёмы-подсказки) стали подходами к устранению противоречий. Так, поиск разрешения противоречия между прочностью конструкции и её весом дал идею местного увеличения толщины, то есть рёбер жёсткости. Гребень на шлеме воина Римской империи, шпангоуты парусных кораблей или силовой набор корпуса ракеты: все эти решения являются примерами применения одного принципа. Этот принцип звучит так: используйте неоднородное строение конструкции для достижения обеих поставленных целей — и высокой прочности, и малого веса конструкции. Такой обобщённый принцип уже может служить изобретательским приёмом для решения изобретательских задач, содержащих противоречие между прочностью и весом конструкции. Для поиска таких принципов Г. С. Альтшуллер проанализировал огромный массив изобретений из патентного фонда. В результате были выявлены 40 приёмов, с помощью которых может быть устранено множество противоречий[13].
Приёмы устранения технических противоречий — это инструмент решения изобретательских задач, представляющий собой обобщённые рекомендации по устранению противоречий, основанные на систематизированном опыте изобретателей.
Особенности применения приёмов
Для примера рассмотрим приём «Принцип перехода в другое измерение». Он предлагает: • изменить направление ориентации (направление движения) объекта, например, наклонить объект или положить его «на бок»; • использовать многоэтажную компоновку объектов вместо одноэтажной; • устранить трудности, связанные с размещением или движением объекта по линии, размещением (перемещением) объекта в двух измерениях (то есть на плоскости). Соответственно трудности, связанные с размещением или движением объекта в одной плоскости, устранить переходом к пространству трёх измерений.
Именно так: от контакта в точке к контакту по линии, развиваются рабочие органы технических систем. Эти изменения хорошо видны на примере эволюции средств для промышленной ловли рыбы. От крючка с наживкой (обработка в точке) к леске с укреплёнными на ней многочисленными крючками (обработка по линии). И далее — сеть (это уже обработка по плоскости) и кошельковый невод, обеспечивающий захват всей рыбы, находящейся в объёме. Примерно так же развиваются и рабочие органы станков — от обработки в одной точке у токарного станка до современной объёмной штамповки, позволяющей добиться высочайшей производительности. Рассмотрим пример применения этого приёма.
На аэродроме авиационного завода скопилось много изготовленных, но ещё не принятых заказчиком самолётов. В связи с приближением осенней непогоды самолёты потребовалось обязательно укрыть в ангаре, но оказалось, что он может принять только две трети всех машин. На плане ангара проверяли различные варианты их размещения, но приемлемого решения не было. И всё-таки с помощью принципа перехода в другое измерение оно было найдено. Конечно, самолёты не стали подвешивать под крышу ангара, ставить вертикально или громоздить друг на друга. У самолётов просто сдули шины на одном из шасси. Все самолёты наклонились на одно крыло, и появилась возможность расположить их так, что крылья разных машин в плане совпали. Все самолёты поместились в ангаре.
Рис. 15
Рис. 16
Применение приёма не отменяет необходимости думать. Приём не даёт самого́ решения, а задаёт некий вектор, направление такого «думания». Увидеть идею решения, представить особенности его реализации на основе предлагаемого принципа должен решатель. Поэтому работа с приёмами должна быть скрупулёзной. Надо внимательно, под самыми разными углами зрения проанализировать рекомендации, заложенные в приёмах.
Таблица выбора приёмов устранения ТП
Как выбрать нужный для решения задачи приём из всего списка приёмов? Их последовательное применение (так называемый перебор вариантов) занимает много времени. Для ускорения отбора приёмов под конкретную задачу Г. С. Альтшуллер в 60-х годах XX века разработал специальный поисковый аппарат — таблицу выбора приёмов устранения технических противоречий[14]. Таблица состоит из тождественных друг другу горизонтальной и вертикальной осей, включающих перечень из 39 ключевых характеристик технических систем. Конфликтные отношения между ними и составляют суть большинства технических противоречий, встречающихся на практике. В ячейки таблицы вписаны номера приёмов из списка. Прежде чем выбрать приём, нужно сформулировать техническое противоречие, составляющее суть изобретательской задачи. Затем улучшаемая и ухудшающаяся характеристики, описанные в противоречии, адаптируются к характеристикам на осях таблицы. Так, если по условиям задачи требуется повысить точность работы прибора, то можно выбрать строку «точность измерений». Но можно, детально исследовав, от чего зависит точность, выбрать конкретную характеристику, которую надо улучшить в приборе, например «силу». На пересечении найденных строки (улучшаемой характеристики) и столбца (ухудшающейся при этом характеристики) находится ячейка, в которой обозначены номера приёмов. Приёмы в каждой ячейке даны не в порядке их возрастания, а по частоте применения в исследованном массиве изобретений. Поэтому если необходимо найти как можно более простое и быстро внедряемое решение, приёмы следует использовать, начиная с первого из рекомендованных. Если же решение должно быть как можно более оригинальным, неожиданным, нужно начинать с последнего. Подробно работа с таблицей приёмов устранения противоречий рассматривается в материалах для второго уровня аттестации.
Рис. 17. Фрагмент таблицы
Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1695; Нарушение авторского права страницы