Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Газообразные и жидкие диэлектрики
Газообразные диэлектрики. 10.1.1. Основные характеристики. Электроотрицательные газы, применение в энергетике. Жидкие диэлектрики. Применение в энергетике. Общие свойства. Используемые и перспективные жидкие диэлектрики.
В лекциях 10 и 11 будут рассмотрены вопросы, касающиеся основных свойств и применения диэлектриков. При этом больше будет уделено внимания общим сведениям и информации о новых перспективных материалах, получение конкретных сведения о свойствах конкретных материалов предполагаются из справочников по электротехническим материалам. Газообразные диэлектрики. Основные характеристики. Основные характеристики газов, как диэлектриков, это диэлектрическая проницаемость, электропроводность, электрическая прочность. Кроме того, зачастую важны теплофизические характеристики, в первую очередь теплопроводность. Диэлектрическую проницаемость газов очень просто рассчитать по формуле e = 1+n(a+m2¤3kT)/e0, где n- число молекул с поляризуемостью a и дипольным моментом m в единице объема. Обычно значение eблизко к 1, отличие от единицы можно обнаружить в 3-4 знаке после запятой. Причина этого - малое число молекул в газовой фазе n. Электропроводность газов обычно не хуже 10-13 См/м, причем, как было показано во второй лекции, основным фактором вызывающим проводимость в не очень сильных полях, является ионизирующее излучение. Вольт-амперная характеристика имеет три характерные зоны - омическое поведение, насыщение, экспоненциальный рост. Диэлектрические потери незначительны и их стоит учитывать только в третьей области. Электрическая прочность у газов, сравнительно с прочностью жидкостей и твердых диэлектриков, невелика и сильно зависит как от внешних условий, так и от природы газа. Обычно пробивные характеристики разных газов сопоставляют при нормальных условиях (н.у.). Эти условия - давление 1 атм, температура 20 °С, электроды, создающие однородное поле, площадью 1 см2, межэлектродный зазор 1 см. Воздух при н.у. имеет электрическую прочность 30 кВ/см. Коэффициент к, показывающий отношение электрической прочности газа к электрической прочности воздуха составляет для некоторых газов, используемых в технике: водород - к = 0.5, гелий - к = 0.2, элегаз к = 2.9, фреон-12 - к = 2.4, перфторированные углеводородные газы к = (4-10),. Теплопроводность газов l также невелика по сравнению с теплопроводностью твердых тел и жидкостей, наибольшее ее значение l= 0.2 Вт/(м× К) - у водорода. Для наиболее популярных газов l= 0.03 Вт/(м× К)--воздух, l= 0.012 Вт/(м× К) - элегаз. Для сравнения - у алюминия l= 200 Вт/(м× К). Максимальные температуры эксплуатации газов определяются либо разложением молекул газа (характерно для сложных молекул), либо увеличением электропроводности до перехода из диэлектрического до резистивного состояния за счет ионизации и диссоциации молекул газа под действием тепловой энергии. Характерные температуры для второго варианта - порядка и более тысячи градусов. Электроотрицательные газы, применение газообразных диэлектриков. Наибольшее применение из газов в энергетике имеет воздух. Это связано с дешевизной, общедоступностью воздуха, простотой создания, обслуживания и ремонта воздушных электроизоляционных систем, возможностью визуального контроля. Объекты, в которых применяется воздух в качестве электрической изоляции - линии электропередач, открытые распределительные устройства, воздушные выключатели и т.п. Электроотрицательными называются газы, молекулы которых обладают сродством к электрону, это означает, что при захвате электрона и превращении молекулы в отрицательный ион выделяется энергия. Этот процесс приводит к явлению прилипания электронов, и уменьшению, тем самым, эффективного коэффициента ударной ионизации на значение коэффициента прилипания haэфф = a-h. Поэтому электроотрицательные газы имеют повышенную электрическую прочность. Из электроотрицательных газов с высокой электрической прочностью наибольшее применение нашел элегаз SF6.. Свое название он получил от сокращения “электрический газ”. Уникальные свойства элегаза были открыты в России, его применение также началось в России. В 30х годах известный ученый Б.М. Гохберг исследовал электрические свойства ряда газов и обратил внимание на некоторые свойства шестифтористой серы SF6. Электрическая прочность при атмосферном давлении и зазоре 1 см составляет Е = 89 кВ/см. Молекулярная масса составляет 146, характерным является очень большой коэффициент теплового расширения и высокая плотность. Это важно для энергетических установок, в которых проводится охлаждение каких-либо частей устройства, т.к. при большом коэффициенте теплового расширения легко образуется конвективный поток, уносящий тепло. Из теплофизических свойств: температура плавления = -50 °С при 2 атм, температура кипения (возгонки) = -63°С. Низкие значения последних параметров означают возможность применения элегаза при низких температурах. Из других полезных свойств отметим следующие: химическая инертность, нетоксичность, негорючесть, термостойкость (до 800°С), взрывобезопасность, слабое разложение в разрядах, низкая температура сжижения. В отсутствие примесей элегаз совершенно безвреден для человека. Однако продукты разложения элегаза в результате действия разрядов (например в разряднике или выключателе) токсичны и химически активны. Комплекс свойств элегаза обеспечил достаточно широкое использование элегазовой изоляции. В устройствах элегаз обычно используется под давлением в несколько атмосфер для большей компактности энергоустановок, т.к., как вы знаете, электрическая прочность увеличивается с ростом давления. На основе элегазовой изоляции созданы и эксплуатируются ряд электроустройств, из них кабели, конденсаторы, выключатели, компактные ЗРУ (закрытые распределительные устройства). Наиболее широкое применение элегаз нашел за рубежом, в особенности в Японии. Например, использование элегаза позволяет в десятки раз уменьшить размеры распредустройств, что очень актуально при высокой стоимости земли для размещения энергохозяйства. Это выгодно даже несмотря на высокую стоимость элегаза - более 10$ за 1 килограмм. Жидкие диэлектрики. Общие свойства. С электрофизической точки зрения наиболее важными характеристиками жидкостей являются диэлектрическая проницаемость, электропроводность и электрическая прочность. Диэлектрическая проницаемость является истинной характеристикой жидкостей и характеризуется дипольным моментом и поляризуемостью молекул. В качестве примера - у неполярного диэлектрика гексана дипольный момент отсутствует, поляризация имеет чисто электронный характер и, вследствие этого, диэлектрическая проницаемость мала e £ 2. Трансформаторное масло, являясь смесью веществ, имеет в своем составе небольшое количество полярных молекул, обладающих дипольным моментом. Поэтому e возрастает до ~ 2, 2-2, 4. Касторовое масло имеет больше полярных молекул, следовательно больше e ~4, 5. Этиловый спирт, глицерин, вода являются представителями полярных веществ, диэлектрическая проницаемость составляет 24, 40, 81 соответственно. Для неполярных жидкостей e < 3 диэлектрическая проницаемость можно рассчитать, зная концентрацию и поляризуемость молекул. Для этого применяется формула Клаузиуса-Моссотти (e-1) ¤(e+2) = na¤3e0 . Электропроводность жидкостей определяется ионизацией молекул, наличием в жидкости примесей особого сорта: ионофоров и ионогенов, возникновением электрогидродинамических течений, как уже рассматривалось во второй лекции. Кроме того, в жидкостях возникают т.н. двойные электрические слои. Двойной электрический слой - образование в жидкости, на границе с другими телами (электроды, диэлектрики, несмешивающиеся жидкости), заряженных слоев с повышенной электропроводностью, причем поверхность раздела и объем жидкости приобретают заряды разного знака. Образование двойных слоев актуально для технических жидких диэлектриков, например для транспорта по трубам горючих диэлектрических сред типа нефти, конденсата и т.д. Устранение двойных слоев может быть осуществлено только при тщательной очистке диэлектрических жидкостей от ионизирующихся примесей. Очистка диэлектрических жидкостей может осуществляться дистилляцией, в.т.ч. под вакуумом, частичной кристаллизацией, адсорбцией, ионным обменом. При этом, как правило, уменьшается электропроводность, диэлектрические потери, возрастает электрическая прочность. Основной примесью, дающей проводимость жидких диэлектриков является вода, а основными примесями, уменьшающими электрическую прочность являются микрочастицы, микропузырьки и вода. Поэтому в практике энергосистем для регенерации трансформаторного масла его фильтруют, обезгаживают вакуумированием, осушают с помощью пропускания через объем, заполненный адсорбентами ( цеолитами , либо силикагелем ). Цеолиты - твердые вещества естественного или искусственного происхождения, обладающие большой удельной поверхностью за счет пор молекулярных размеров и возможностью адсорбции примесей в этих порах. Силикагель - пористый адсорбент для поглощения влаги и полярных примесей. Он обладает меньшей избирательностью по отношению к разным примесям и меньшей удельной поверхностью по сравнению с цеолитами. Электропроводность жидкостей наиболее радикально (до 6 порядков величины по сравнению с данными из справочников) возрастает после применения нового способа очистки- электродиализа. Электродиализ - способ удаления ионов из промежутка за счет пропускания постоянного тока при использовании ионообменных мембран, проводимость которых осуществляется только одним видом ионов: в катионообменной носители заряда - катионы, ее располагают у катода, в анионообменной носители заряда - анионы, ее располагают у анода. За счет различных способов очистки жидкостей в исследованиях удавалось получить электропроводность не выше электропроводности лучших твердых диэлектриков, а именно до 10-19 См/м. Электрическая прочность - также, как и электропроводность, в значительной степени является технологической характеристикой жидкого диэлектрика и электродов, способов приготовления и эксплуатации изоляционного промежутка. На нее влияют не только те примеси, которые определяют электропроводность, но и форма и материал электродов, длительность импульса, наличие пузырьков. Есть несколько наиболее общих и очевидных приемов увеличения электрической прочности: дегазация жидкости, пропускание через адсорбент, пропускание через фильтр с субмикронными размерами пор. Некоторые из этих способов используются в энергосистемах для осушки и регенерации масла. Двадцать-тридцать лет назад велись споры, является ли электрическая прочность “истинной” характеристикой жидкости. Этот вопрос достаточно принципиален. Дело в том, что если измеренная электрическая прочность является истинной характеристикой, то практически бессмысленны попытки ее увеличения. Если электрическую прочность считать технологической характеристикой, следствием протекания определенных предпробивныхпроцессов, то резонно, что воздействием на эти процессы можно управлять электрической прочностью. Как указывалось в лекции 9, электрический пробой является следствием цепочки событий, которые весьма чувствительны как к примесям, так и к свойствам границы раздела “электрод-жидкость”. Поэтому пробоем можно управлять. Для примера рассмотрим эксперименты по пробою на постоянном напряжении замечательной диэлектрической жидкости - перфтортриэтиламина (С2F5)3N. Первые измерения свежезалитой жидкости без специальной очистки жидкости и электродов дали значения электрической прочности Епр= 60-70 кВ/см, причем с ростом числа пробоев электрическая прочность слабо возрастает до 70-80 кВ/см. Если жидкость подвергнуть операциям дегазирования, обезвоживания и фильтрации, то можно получить 200-300 кВ/cм. После дополнительного проведения тренировочной серии в 20-30 маломощных разрядов электрическая прочность достигала 550-600 кВ/см. Популярное: |
Последнее изменение этой страницы: 2016-06-05; Просмотров: 6624; Нарушение авторского права страницы