Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Низкотемпературные сверхпроводники



Выше я уже останавливался на некоторых конкретных сверхпроводящих материалах. В принципе свойство сверхпроводимости характерно практически для всех материалов. Только для самых электропроводящих - медь, серебро (парадокс? ) сверхпроводимость не обнаружена. Конкретное применение сверхпроводимости в энергетике выглядит заманчивым: иметь линии электропередач без потерь было бы замечательно. Другой вариант применения - генератор со сверхпроводящими обмотками. Образец такого генератора разрабатывался в Санкт-Петербурге, были проведены успешные испытания. Третий вариант - электромагнит, индукция которого может управляемо меняться в зависимости от силы тока.

Еще один пример - сверхпроводящий индуктивный накопитель. Представьте себе огромную катушку из сверхпроводящего проводника. Если в нее каким-либо способом закачать ток и замкнуть входной и выходной провода, то ток в катушке будет течь бесконечно долго. В соответствии с известным законом в катушке будет заключена энергия

W = L× I2/2

где L- индуктивность катушки. Гипотетически можно представить себе, что в какой-то момент времени избытка энергии в энергосистеме, из нее забирается энергия в такой накопитель. Здесь она хранится столько времени, сколько нужно до появления потребности в энергии. Затем она постепенно, управляемо перекачивается опять в энергосистему.

В физике и технике сверхпроводимости имеются и слаботочные аналоги радиоэлементов обычной электроники. Например в системах «сверхпроводник - тонкая прослойка резистивного металла (или диэлектрика) - сверхпроводник» возможен ряд новых физических эффектов, которые уже применяются в электронике. Это квантование магнитного потока в кольце, содержащем такой элемент, возможность скачкообразного изменения тока в зависимости от напряжения при воздействии на систему слабого излучения, и построенные на этом принципе эталонные источники напряжения с точностью до 10-10 В. Кроме этого, существуют запоминающие элементы, аналого-цифровые преобразователи и т.п. Существует даже несколько проектов компьютеров на сверхпроводниках.

Актуальность проблемы микроминиатюризации с помощью полупроводников заключается в том, что даже малое выделение энергии в очень малом объеме может привести к значительным перегревам и остро встает проблема отвода тепла.

Эта проблема особенно актуальна для суперкомпьютеров. Оказывается в микрочипах локальные тепловые потоки могут достигать значений киловатт на квадратный сантиметр. Убрать тепло обычными путями, с помощью обдува воздухом не удается. Предложили убрать корпуса микросхем и обдувать непосредственно микрокристалл. Здесь возникла проблема слабой теплопередачи в воздух. Следующим шагом предложили залить все жидкостью и отводить тепло кипячением жидкости на этих элементах. Жидкость должна быть очень чистой, не содержать микрочастиц, не вымывать ничего из многочисленных элементов компьютера. Пока эти вопросы полностью не решены. Исследования проводятся с фторорганическими жидкостями.

В сверхпроводниковых компьютерах таких проблем нет, т.к. нет потерь. Однако само охлаждение оборудования до криогенных температур требует немало затрат. При этом, чем ближе к абсолютному нулю - тем больше затраты. Причем зависимость нелинейная, она даже сильнее, чем обратно пропорциональная зависимость.

Температурную шкалу в криогенной области условно делят на несколько областей по температурам кипения сжиженных газов: гелиевая (ниже 4.2 К), водородная 20.5 К, азотная 77 К, кислородная 90 К, аммиак (-33 °С). Если бы удалось найти материал, у которого температура кипения была бы вблизи или выше водородной - затрат на поддержание кабеля в рабочем состоянии было бы в десять раз меньше чем для гелиевых температур. При переходе к азотным температурам был бы выигрыш еще на несколько порядков величины. Поэтому сверхпроводящие материалы, работающие при гелиевых температурах, хотя были открыты более 80 лет назад, до сих пор не нашли применения в энергетике.

Можно отметить, что очередные попытки разработать действующее криогенное устройство предпринимаются после каждого из прорывов в технологии. Прогресс в технологии привел к тому, что появились сплавы, которые обладали лучшими характеристиками по критическим индукции и температуре. Так в начале 70-х годов был бум по исследованию станнида ниобия Nb3Sn. У него Вс = 22 Тл, а Тс= 18 К. Однако у этих сверхпроводников, в отличие от металлов эффект сверхпроводимости более сложен. Оказывается у них существуют два значения критической напряженности Вс0 и Вс1. В промежутке между ними материал не имеет сопротивления по отношению к постоянному току, но имеет конечное сопротивление переменному току. И хотя Вс0 достаточно велико, но значения второй критической индукции Вс1 мало отличается от соответствующих значений для металлов. «Простые» сверхпроводники получили название сверхпроводников первого рода, а «сложные» - сверхпроводников второго рода.

Новые интерметаллические соединения не обладают пластичностью металлов, поэтому попутно решался вопрос, как делать протяженные элементы типа проводов из хрупких материалов. Разработали несколько вариантов, в том числе создание композитов типа слоеный пирог с пластичными металлами, например медью, нанесение интерметаллов на медную подложку и т.п., что пригодилось при разработке сверхпроводящей керамики.

Сверхпроводящая керамика

Следующим радикальным шагом в исследовании сверхпроводимости явилась попытка найти сверхпроводимость в оксидных системах. Смутная идея разработчиков состояла в том, что в системах содержащих вещества с переменной валентностью возможна сверхпроводимость, причем при более высоких температурах. Были исследованы двойные системы, т.е. состоящие из двух разных оксидов. Здесь не удалось найти сверхпроводимость. И только в тройных системах BaO-La2O3-CuO в 1986 г была обнаружена сверхпроводимость при температуре 30-35 К. За эту работу Беднорц и Мюллер получили Нобелевскую премию в следующем, (!! ) 1987 г. Интенсивные исследования родственных составов в течение года привели к обнаружению сверхпроводимости в системе BaO-Y2O3-CuO при температуре 90 К. На самом деле сверхпроводимость получена в еще более сложной системе, формулу которой можно представить какYBa2Cu3O7-d. Значение d для самого высокотемпературного сверхпроводящего материала составляет 0.2. Это означает не только определенное процентное соотношение между исходными окислами, но и уменьшенное содержание кислорода. Действительно, если посчитать по валентностям, то у иттрия - 3, у бария - два, у меди 1 или 2. Тогда у металлов полная валентность составит 10 или 13, а у кислорода - чуть меньше 14. Значит в этой керамике избыток кислорода относительно стехиометрического соотношения.

Керамику получают по обычной керамической технологии. Как из хрупкого вещества делать провода? Один из способов, делают суспензию из порошка в подходящем растворителе, затем раствор продавливают через фильеру, подсушивают и сматывают на барабан. Окончательное удаление связки проводят выжиганием, провод готов. Свойства таких волокон: критические температуры 90-82 К, при 100 К r=12 мОм·см, (примерно как у графита), критическая плотность тока 4000 А/м2.

Остановимся на последней цифре. Это значение крайне низко для применения в энергетике. Сравнивая с экономической плотностью тока (~1 А/мм2), видно, что в керамике плотность тока в 250 раз меньше. Ученые исследовали этот вопрос и пришли к выводу, что во всем виноваты контакты, которые не являются сверхпроводящими. Действительно, в монокристаллах получены плотности тока, достигающие экономической плотности тока. А в последние два-три года получены керамические провода, плотность тока в которых превышает экономическую плотность тока. В 1999 году в Японии введен в пробную эксплуатацию сверхпроводящий кабель, соединяющий две станции метро. Кабель сделан по технологии " сэндвича", т.е. хрупкая керамика в нем находится между двумя слоями упругой и пластичной меди. Изоляцией и одновременно, хладоагентом, является жидкий азот.

Как вы думаете, что является одной из основных проблем работы этого кабеля? Можете догадаться, об этих проблемах раньше говорили применительно к изоляции. Оказывается, диэлектрические потери в таком замечательном диэлектрике, как жидкий азот, подогревают его, что требует постоянной заботы об дополнительном охлаждении.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-06-05; Просмотров: 1596; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь