Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Тематика вопросов для собеседования
Теоретические вопросы: 1. Что изучает динамика? 2. Что называется силой? 3. Что такое инертность? 4. Что называется массой? 5. Как будет вести себя тело при отсутствии воздействий со стороны других тел? 6. Какой характеристикой (рассматриваемой в кинематике) связаны между собой сила и масса? 7. Чем сила отличается от момента силы? 8. Что такое плечо силы? 9. Как определяется величина и направление момента силы? 10. Что общего и в чем различие между понятиями масса и момент инерции? 11. Какие инерционные характеристики относятся к поступательному, а какие к вращательному движению? 12. Что утверждается в первом законе Ньютона? 13. Чем первый закон Ньютона для поступательного движения отличается от аналогичного закона для вращательного движения? 14. Между какими характеристиками устанавливает взаимосвязь второй закон Ньютона? 15. Чем второй закон Ньютона для поступательного движения отличается от аналогичного закона для вращательного движения? 16. Какая закономерность, проявляющаяся при взаимодействии тел, постулируется в третьем законе Ньютона? 17. Чем третий закон Ньютона для поступательного движения отличается от аналогичного закона для вращательного движения? 18. Чем отличаются естественные силы от управляющих? 19. Какова причина возникновения управляющих сил? Практические вопросы: 20. Как рассчитать горизонтальную, вертикальную и результирующую силы реакции опоры? 21. Как определить угол наклона вектора результирующей силы реакции опоры к горизонтали? 22. Как найти и отметить точку приложения силы реакции опоры? 23. Как измерить расстояние от ОЦТ тела до точки приложения силы реакции опоры? 24. Как измерить угол наклона линии соединяющей ОЦТ с точкой приложения силы реакции опоры к горизонтали? 25. Как определить плечо силы реакции опоры? 26. Как рассчитать момент силы реакции опоры?
ИНЕРЦИОННЫЕ ХАРАКТЕРИСТИКИ ТЕЛА СПОРТСМЕНА В ФИЗИЧЕСКОМ УПРАЖНЕНИИ Лабораторная работа № 5.1 ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТЕЛА СПОРТСМЕНА Цель занятия: освоить методы определения инерционных характеристик тела спортсмена в физическом упражнении. Теоретические сведения К инерционным характеристикам тел относят массу при поступательном движении и момент инерции при вращательном. Массой (лат. – massa, древ.-греч. – μ α ζ α ) в античные времена называли кусок теста. Позднее смысл слова расширился, и оно стало обозначать цельный, необработанный кусок какого-либо вещества. Использование понятия масса в качестве научного термина было предложено И. Ньютоном. В труде «Математические начала натуральной философии» (1687) Ньютон сначала определил «количество материи» в физическом теле как произведение его плотности на объем. Далее он указал, что в том же смысле будет использовать термин масса «m» m = ρ V, (5.1.1) где плотность вещества это « ρ », объем тела – « V». И. Ньютон вводит массу во второй закон динамики, через количество движения, где под количеством движения понимается произведение массы тела на скорость его движения – «mV». «Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует» (перевод академика А.Н. Крылова). Приведенное определение может быть записано следующим аналитическим выражением: F * ∆ t = V2 m – V1 m. (5.1.2 Левая часть выражения, – произведение силы на время ее действия, – называется импульсом силы. Величина импульса силы действующего на тело равна изменению количества движения (импульса) этого тела. Преобразуем выражение: F * ∆ t = m * (V2 – V1) (5.1.3) F = m * (V2 – V1) / ∆ t (5.1.4) F = m * a (5.1.5)
Выражение приняло широко распространенную форму написания второго закона Ньютона, где масса служит коэффициентом пропорциональности между силой «F», действующей на тело, и ускорением «a», вызванным этой силой и выступает в качестве меры инертности тела. Инертность – характеризует способность тела сопротивляться изменению собственной скорости. Принято считать, что отношение ускорений, приобретаемых телами в результате взаимодействия, обратно отношению масс тел:
Именно это соотношение фактически позволяет определить массу тела. Если массу одного из взаимодействующих тел взять в качестве эталона « mэт », то масса другого « m » может быть определена из соотношения (1):
На практике массу чаще всего измеряют взвешиванием. Единицей массы в системе СИ является 1 килограмм. Единица массы − 1 кг – изготовлена из платиноиридиевого сплава в форме гири, хранящейся в качестве международного эталона в Международном бюро мер и весов, г. Севр близ Парижа. .При вращательных движениях тел в качестве меры инертности выступает момент инерции. Момент инерции для случая материальной точки с массой «m», вращающейся относительно оси «О» (см. рис. 5.1.1.), определяется произведением массы на квадрат расстояния «R» от оси вращения до материальной точки:
J = m*R2. (5.1.8.)
Рис. 5.1.1
Если рассматривается тело конечных размеров, то его можно представить состоящим из множества материальных точек. Его полный момент инерции определяется суммой моментов инерции составляющих его частиц (J = ∑ mi*ri2 – 4.1.4.). Если тело вращается относительно оси проходящей через его центр масс, то его инертность называют собственным моментом инерции тела. Для целого ряда тел известных геометрических форм собственные моменты инерции рассчитаны (рис. 5.1.2.).
Рис. 5.1.2. Собственные моменты инерции некоторых тел. http: //upload.wikimedia.org/wikipedia/commons/a/ad/Moment_of_inertia_examples.gif
Тело человека принято рассматривать как систему, состоящую из ряда взаимосвязанных тел, в качестве которых рассматриваются звенья тела (голова, туловище, плечи, бедра и т.д.). Моделируя тело человека, допускают, что голова – это шар с однородным распределением масс, другие звенья представляются в качестве цилиндров с однородным распределением масс, при этом все звенья считаются твердыми телами. В такой модели собственный момент инерции звеньев будет определяться по известным формулам: – для головы по формуле для шара с однородным распределением масс
Jo = 2/5 mr2 (5.1.9.),
а для всех других звеньев по формуле для цилиндра с однородным распределением масс
Jo = 1/12 m l2 (5.1.10.).
Для более точного вычисления собственных моментов инерции используют уравнения регрессии, полученные на основе экспериментальных данных. Например – Зациорский В.М. и др. Биомеханика двигательного аппарата человека. – М., 1981. – 212 с. При вращательных движениях в ходе выполнения физических упражнений звенья тела человека вращаются не только относительно собственной оси, но и относительно какой-либо другой оси. В этом случае для определения моментов инерции звеньев используется теорема Гюйгенса – Штейнера, или просто теорема Штейнера (названа по имени швейцарского математика Якоба Штейнера и голландского математика, физика и астронома Христиана Гюйгенса). Момент инерции твердого тела относительно какой-либо оси определяется суммой момента инерции относительно оси, параллельной заданной, но проходящей через ОЦТ тела и произведения массы тела на квадрат расстояния между осями. Например, если тело расположено так, как изображено на рис. 5.1.3, и имеет массу «m», его момент инерции относительно оси АВ, проходящей через точку «0», будет вычисляться по формуле: J = Jц + mR2, (5.1.11)
где «Jц» – момент инерции тела относительно оси CD, проходящей через его ОЦТ; «R» – кратчайшее расстояние между осью вращения АВ, проходящей через точку «0» и осью СD, параллельной ей и проходящей через ОЦТ тела. Доказательство теоремы смотрите, например: http: //ru.wikipedia.org)/wiki/%D2%E5%EE%F0%E5%EC%E0_%D8%F2%E5%E9%ED%E5%F0%E0.
Полный момент инерции тела человека определяется как расчетным, так и экспериментальным путями. Расчетный способ предполагает нахождение момента инерции тела по формуле:
J = Σ (Jцi + miRi2), (5.1.12)
где «Jцi» – момент инерции, i-го звена относительно его ЦТ, «mi» – масса i-го звена, «Ri» – расстояние между ЦТ i-го звена и осью вращения. При выполнении физических упражнений спортсмен способен изменять момент инерции собственного тела, в то время как его масса остается постоянной. Изменение момента инерции осуществляется за счет изменения расстояния от точки отсчета (оси вращения) до центров тяжести звеньев тела спортсмена, которое в свою очередь достигается благодаря мышечным усилиям. Количество вращательного движения принято называть кинетическим моментом. Кроме этого могут встретится и другие названия этой физической величины – момент количества движения, момент импульса, угловой момент, орбитальный момент. Кинетический момент – величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение – равен произведению момента инерции тела на угловую скорость вращения. Для системы твердых тел вращающейся как одно твердое тело вокруг одной из осей симметрии, кинетический момент – «L» может быть записан:
, (5.1.13) где « » – момент инерции относительно оси вращения, « » – вектор угловой скорости. За начало отсчета при вычислении моментов инерции, в принципе, может быть взята любая ось или точка, при этом будут получены разные величины, связанные друг с другом через теорему Штейнера. Полный кинетический момент (вращательный импульс) тела спортсмена как целого определяется векторной суммой кинетических моментов всех звеньев тела. L = ∑ (Jоi * Ω i + mi * Vi * di), (5.1.14)
где «Joi» – момент инерции i-го звена относительно его ЦТ; «Ω i» – угловая скорость звена относительно его ЦТ; «mi» – масса данного звена; «Vi» – скорость его ЦТ; «di» – плечо вектора скорости ЦТ относительно оси вращения тела спортсмена. Изменение кинетического момента в соответствии со вторым законом Ньютона будет равно результирующему моменту внешних сил «Мвнеш.»
Δ L/Δ t = Мвнеш., (5.1.15)
где «Δ L» – изменение кинетического момента; «Δ t» – время этого изменения. Экспериментальные способы нахождения момента инерции тела, как правило, основаны на использовании второго закона Ньютона для вращательного движения:
J ε = M, (5.1.14)
где « М» – момент силы, действующей на тело; « ε » – угловое ускорение, приобретенное телом под действием момента силы; « J » – момент инерции тела. В качестве примера такого метода можно привести установку, разработанную в стенах нашего университета. Ее упрощенная схема представлена на рис. 5.1.4.
Рис. 5.1.4
Установка представляет собой платформу 3, размещенную на основании 1 с помощью шарнирной опоры 2. Платформа 3 может свободно вращаться на шарнирной опоре 2. Для измерения спортсмена устанавливают на платформу в исследуемой позе, отклонив платформу от положения равновесия на некоторый угол φ о, обеспечивающий несовпадение проекции ОЦТ системы «спортсмен-платформа» с осью 2 платформы 3, и фиксируют. Затем, устраняя фиксирующие элементы, позволяют платформе вращаться свободно на шарнирной опоре 2 без начальной скорости вращения. При этом регистрируют время поворота платформы 3 на заданный угол Δ φ, не превышающий 5º. По результатам измерений аналитически определяют момент инерции тела. Настоящая работа заключается в определении момента инерции тела спортсмена относительно его ОЦТ расчетным путем.
Порядок выполнения работы 1. Подготовка материалов и программ для определения моментов инерции тела спортсмена в физическом упражнении. 1.1. Открыть файл Excel «5.1. Динамика. Образец оформления таблицы по определению моментов инерции тела в физическом упражнении» (диск D/Биомеханика/Образцы оформления таблиц в Excel). Файл содержит шесть электронных таблиц, взаимосвязанных между собой: – «Определение моментов инерции тела»; – «Определение массы звеньев тела»; – «Определение длины звеньев»; – «Определение масштаба расстояний»; – «Определение расстояний от центров тяжести звеньев до ОЦТ тела спортсмена (Ri)». – «Изменение момента инерции тела в физическом упражнении». · Сохранить файл, используя функцию Microsoft Excel «Сохранить как» в своей папке (диск D/Биомеханика/Студент/Группа/Ф.И.О./Динамика) под названием «Определение моментов инерции тела в физическом упражнении». 1.2. С помощью программы Adobe Photoshop открыть файл «Изменение позы тела спортсмена» (диск D/Биомеханика/Студент/Группа/Ф.И.О./Программа места). · Сохраните файл, используя функцию Adobe Photoshop «Сохранить как», под названием «Определение моментов инерции тела спортсмена относительно его ОЦТ» (диск D/Биомеханика/Студент/Ф.И.О./Динамика). 1.3. Открыть программу RasChT.exe (диск D/Биомеханика). 2. Определение массы звеньев тела (mi) в килограммах. · В таблице «Определение массы звеньев тела» в ячейке содержащей значение массы тела спортсмена замените значение на массу тела спортсмена выполняющего упражнение, которое вы анализируете. · Значения массы звеньев тела появятся автоматически в соответствующем столбце таблицы «Определение массы звеньев тела» и в столбце «Масса, Мi (кг)» таблицы «Определение моментов инерции тела». · Внесите изменения в содержание столбца «Масса в %» таблицы «Определение массы звеньев тела», если процентное соотношение масс звеньев отличается от представленных усредненных значений. Это приведет к коррекции данных. Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 577; Нарушение авторского права страницы