Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Понятие о модульной координации размеров в строительстве. Привязка конструктивных элементов к координатным осям здания.



Основной для унификации и стандартизации геометрических параметров служит модульная координация размеров строительстве (МКРС).

Основные положёния МКРС (согласно стандарту СЭВ 1001—78) представляют собой правила координации (согласования) размеров объемно-планировочных и конструктивных элементов зданий и сооружений, их элементов, строительных конструкций и элементов оборудования на базе модуля.

Модуль ~ размер, условная единица, применяемая для такой координации.

Суть МКРС в том, что все размеры объемно-планировочных, конструктивных и других элементов зданий и сооружений должны быть кратны модулю, названному основным— размеру, принятому за основу для назначения других, производных от него модулей.

За величину основного модуля, обозначенного М, принят размер 100 мм.

Помимо основного вводятся также производные модули: укрупненные (мультимодули) и дробные (субмодули). Укрупненные модули: 60М (6000 мм); ЗОМ; 12М; 6М (600 мм); ЗМ; 2М (200 мм). Дробные модули: 1/2М (50 мм); 1/5М (20 мм); 1/10М (10 мм); 1/20М (5 мм); 1/50М (2мм); 1/100М (1 мм). Назначение производных модулей — ограничить количество применяемых или в случае необходимости допускаемых размеров при проектировании, что повышает степень унификации геометрических параметров. Укрупненные модули нужны для назначения объемно-планировочных параметров основных элементов зданий (ширины, длин, шага, пролета) и крупных конструкций. При этом руководствуются такими правилами: чем больше величину параметра основного элемента здания, тем больше величдна укрупненнрго модуля.

Дробные модули также способствуют ограничениям при назначении размеров относительно небольших конструктивных элементов—толщин плитных и листовых материалов и т. п., а также для координации этих размеров между собой.

Применение.МКРС в первую очередь осуществляется при установлении размеров между координационными осями зданий и сооружений. Так Называются осевые линии, вдоль которых располагаются основные несущие конструкции (стены, колонны). Расстояние в плане между координационными осями здания в направлении, соответствующем расположению основной несущей конструкции перекрытия или покрытия, называют пролетом. Расстояние в плане между координационными осями в другом направлении называют шагом (часто, например, применяют выражение— «шаг несущих конструкций»). И пролет, и шаг назначают исходя из условий использования стандартных конструктивных элементов — ригелей, балок, плит перекрытий, ферм.

Шаг и пролет- элементы модульной пространственной системы — координатного пространства — системы модульных или координатных плоскостей, членящих здание на объемно-пространственные элементы. Так называют часть объема здания с размерами, равными высоте этажа, пролету и шагу. Согласно СТ СЭВ 1001—78, предпочтение отдается прямоугольной модульной пространственной координационной системе. Допускаются также косоугольные, центрические и другие системы.

Выста этажа (Нэт) в многоэтажншГзданиях — расстояние от уровня пола данного этажа до уровня пола вышележащего этажа. Модульная высота этажа (координационная высота этажа) —расстояние между горизонтальными координационными плоскостями, ограничивающими этажи (при определении высоты верхнего этажа толщина чердачного перекрытия условно принимается равной толщине ниже лежащего перекрытия). Согласно МКРС, высота этажей всегда должна быть модульной. В одноэтажных производственных зданиях высота этажа равна расстоянию от уровня пола до нижней грани несущей конструкции покрытия.

Планировочным элементом называют горизонтальную проекцию объемнопланировочного элемента. Соответственно координационные оси — горизонтальные проекции вертикальных координационных плоскостей. Координационные оси называют также разбивочными осями: этимология этого традиционного термина—разбивка осей в натуре перед началом строительства. Систему модульных разбивочных осей упрощенно называют еще сеткой осей.

Их обозначают кружками и маркируют: продольные оси буквами, поперечные — цифрами. Последовательность маркировки осей принята слева направо и снизу вверх. Эта система осей при проектировании служит той координатной сеткой, на основе которой устанавливается взаимное расположение всех несущих конструкций между собой, а при строительстве они служат той размерной основой, которая позволяет точно существлять в натуре эти согласования. Для этих целей в проектах должна быть точно указана привязка основных несущих конструкций к координационным осям. Этим термином обозначают расположение граней конструктивных элементов (несущих и ненесущих), встроенного оборудования по отношению к координатным осям.

МКРС устанавливает три типа размеров для объемно-планировочных и конструктивных элементов здания:

1. Основные координационные размеры, например, объемно-планировочные параметры: пролеты L, шаги Ш, высота этажей Яэт.

2.Координационные размеры элементов, отличающиеся аддитивными (слагаемыми) размерами основных координационных размеров: /о, bo, h0 (высота) или d0 (толщина).

3.Конструктивные размеры элементов I, b, h или d. При этом /=/0 —б, где б — зазор, необходимый для установки элементов, в соответствии с особенностями конструктивных узлов, условиями монтажа. Конструктивные размеры могут быть и больше координационных на величину выступов, располагаемых в смежном координационном пространстве.

Основные правила привязки несущих конструкций к модульным разбивочным осям следующие. Геометрические оси внутренних стен, колонн совмещаются разбивочными осями; исключения допускаются для стен лестничных клеток, стен с вентиляционными каналами и т. п.

При привязке наружных стен и колонн их геометрические оси часто не совпадают с разбивочными; в зависимости от целесообразности размещения несущих конструкций перекрытий или покрытий применяют или «нулевую привязку» (внутренняя грань стены или наружная грань колонн совпадают с разбивочной осью), или привязку, принятую для внутренних стен, либо оговоренную особо.

Конкретные условия привязки несущих конструкций рассмотрены при описании несущих остовов зданий различных видов.

При этом важно помнить, что при назначении размеров привязок стен полезно соблюдать кратность разме ров, свойственных кладке искусственных камней с учетом швов (так, для кирпичной кладки привязочные размеры: 130, 250, 380, 510 и т. д.). В подсобных случаях, рассматриваемых как исключение, допустимо применение размеров, отличных от принятых МКРС. И это вполне объяснимо, если постоянно помнить, что смысл внедрения МКРС — геометрическое обеспечение широкого применения сборных индустриальных изделий, обеспечение их взаимозаменяемости и взаимоувязки всех деталей, конструкций, встроенного оборудования, мебели и т. п.

 

Требования к фундаментам. Факторы, влияющие на глубину заложения фундаментов. Классификация фундаментов по конструктивным схемам, материалу, характеру работы, глубине заложения.

Заглубленный ниже поверхности грунта конструктивный элемент, воспринимающий нагрузки на здание и передающий их от здания основанию, называют фундаментом.

Расстояние от спланированной поверхности грунта до подошвы фундамента называют глубиной заложения. Назначение здания, наличие в нем подвала, глубина промерзания, уровень грунтовых вод — все это влияет на глубину заложения фундамента. Фундаменты классифицируют по конструктивным схе­мам, материалу, характеру работы и глубине заложения.

По конструктивным схемам:

ленточные, располагаемые непрерывной лентой под несущими стенами здания;

столбчатые, в виде отдельных опор под колоннами каркасных зданий;

сплошные, в форме массивной плиты под зданием;

свайные, в виде железобетонных или других стержней, забитых в грунт.

По материалу:

из природного камня;

бутобетона;

бетонные;

железобетонные.

По характеру работы:

жесткие, работающие только на сжатие;

гибкие, работающие на сжатие и изгиб.

По глубине заложения:

фундаменты мелкого заложения (до 5 м);

глубокого (более 5 м).

Разнообразные конструкции фундаментов гражданских зданий должны удовлетворять требованиям проч­ности, водостойкости, долговечности, а также быть индустриальными и экономичными.
Требования предъявляемые к фундаментам:

1) прочность;

2) устойчивость, на опрокидывание и скольжение в плоскости подошвы фундамента;

3) устойчивость к агрессивным грунтовым водам;

4) стойкость к атмосферным факторам (морозостойкость; пучение грунтов при замерзании);

5) соответствие по долговечности сроку службы здания;

6) индустриальность;

7) экономичность.

Фундаменты не только передают силовые воздействия от здания основанию, но и сами подвергаются ряду статических и динамических силовых и несиловых воздействий (рис. 3.). К статическим силовым относятся воздействия собственного веса конструкций здания с приходящимися на них вертикальными нагрузками, бокового давления грунта, его упругого отпора и неравномерных деформаций основания; к динамическим — ветровые, сейсмические, вибрационные воздействия. При высоком уровне стояния грунтовых вод фундамент подвергается также гидростатическому давлению по боковой поверхности и подошве; при основании, сложенном пучинистыми грунтами, — воздействию сил пучения. К несиловым относят воздействие грунтовых вод и растворенных в них химически агрессивных примесей, а также переменных температур по высоте фундамента и его толщине (при наличии теплого подвала или подполья).

Анализ перечисленных воздействий в процессе проектирования позволяет найти конструктивные или строительные меры для исключения или уменьшения некоторых из них. Например, воздействие сил пучения устраняют соответствующим выбором глубины заложения фундаментов; миграция грунтовой влаги через конструкцию может быть исключена или прервана введением гидроизоляционных слоев; воздействие неравномерных осадок заторфованного грунта оснований — их заменой, горизонтальных подвижек основания и вибраций — отсыпкой вертикальных пазух по внешнему обводу фундаментов амортизирующими материалами (например, шлаком) и т. п. Конструктивно неустранимые внешние силовые воздействия на фундамент определяют его работу на сжатие и изгиб. Он также подвержен воздействиям грунтовой влаги и теплового потока, если фундамент служит ограждением теплого подвала или подполья. Соответственно конструкции фундаментов должны удовлетворять требованиям прочности, устойчивости и долговечности, а также общим требованиям экономичности и индустриальности. Согласно этим требованиям, выбирают материал фундамента, глубину заложения, конструктивный тип, форму и размеры сечений.

Материалом фундаментов служит естественный или искусственный камень (бетон). Наибольшее распространение получили бетонные и железобетонные (сборные и монолитные) конструкции фундаментов.

Глубина заложения фундаментов назначается в зависимости oт объемно-планировочного решения здания (наличие подвала, подземных, коммуникаций), величины и характера нагрузок на основание, геологического строения и характера напластований отдельных видов грунтов (глубина заложения может быть несколько увеличена с прорезкой слабого слоя грунта для установки подошвы фундамента на более прочный подстилающий слой), гидрогеологических и климатических условий, определяющих глубину сезонного промерзания и оттаивания грунтов.

В случаях когда объемно-планировочные и другие факторы не влияют на глубину заложения фундаментов, ее величина принимается минимальной. На нескальных и непучинистых грунтах она составляет 0, 5 м для наружных стен и колонн, для внутренних стен — 0, 2 м при сборной конструкции фундаментов и 0, 5 м при монолитной

В пучинистых глинистых грунтах, мелкозернистых и пылеватых влажных песчаных и илистых грунтах глубина заложения фундаментов зависит от глубины сезонного промерзания и температурного режима здания, его подвала или подполья. Глубина заложения фундаментов наружных стен и колонн отапливаемых зданий при таких грунтовых условиях принимается не менее расчетной глубины промерзания Н, внутренних опор при холодных подвалах и подпольях — 0, 5 Н, при теплых — вне зависимости от этой величины. Для неотапливаемых зданий глубина заложения фундаментов наружных и внутренних опор принимается не менее H.

Конструкции фундаментов бывают различных типов: ленточные, столбчатые, плитные (сплошные) и свайные. Выбор типа фундаментов зависит от конструктивной системы зданий, величины передаваемых нагрузок, а также от несущей способности и деформативности грунтов.

Для бескаркасных зданий с несущими стенами чаще всего применяют ленточные или свайные фундаменты, для каркасных — столбчатые или " свайные, для многоэтажных и высотных зданий различных конструктивных систем — плитные или свайные фундаменты. Окончательный выбор варианта конструкции фундамента осуществляется по результатам технико-экономического анализа вариантов.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-12; Просмотров: 1386; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь