Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Холодное полимерное воздействие на залежь высоковязкой нефти в карбонатных коллекторах. Цель и механизм ведения процесса.



Полимерное заводнение заключается в том, что в воде растворяют высокомолекулярный химический реагент - полиакрилламид, обладающий способностью даже при малых концентрациях существенно повышать вязкость воды, снижать ее подвижность и за счет этого повышать охват пластов заводнением.

При концентрации полимера в растворе от 0, 01 до 0, 1 % вязкость его увеличивается до 3-4 мПа*с. Это приводит к такому же уменьшению соотношения вязкостей нефти и воды и сокращению условий прорыва воды по неоднородным пластам. В процессе фильтрации полимерных растворов в пористой среде они приобретают кажущуюся вязкость, которая зависит от размеров каналов фильтрации и скорости перемещения раствора полимера, и может в 10-20 раз превышать величину, измеренную вискозиметром. Часть полимера адсорбируется на поверхности каналов фильтрации, снижая их проницаемость, а в связи с тем, что раствор поступает сначала в наиболее проницаемые пропластки, это явление способствует выравниванию профиля проницаемости пород пласта. Из-за адсорбции активного вещества вытеснение перед фронтом раствора полимера образуется вал пластовой воды, а затем обедненного раствора. С увеличением солености и уменьшением проницаемости пласта адсорбция усиливается. Величина адсорбции составляет 0, 15-0, 75 кг/м3 пористой среды.

Ухудшение работы полимерного раствора при сильной адсорбции активного вещества приводит к большому отставанию фронта полимерного раствора от фронта вытеснения нефти водой. Вследствие этого значительная часть нефти вытесняется неактивной водой, что приводит к меньшей нефтеотдаче пласта.

 

Циклическое внутрипластовое полимерно-термическое воздействие (ЦПТВ).

 

Для совершенствования технологии термополимерного воздействия и уменьшения расхода полиакриламида создана новая технология воздействия на сложнопостроенную залежь с нефтями повышенной и высокой вязкости – циклическое внутрипластовое полимерно-термическое воздействие (ЦВПТВ). Технология термополимерного воздействия (ТПВ) предусматривает создание в пласте оторочки горячего полимерного раствора, нагретого на поверхности, с последующим ее продвижением по пласту закачкой необработанной холодной или горячей водой. Однако плохие коллекторские свойства (низкие проницаемость и пористость) многих нефтяных месторождений и в связи с этим малая приемистость нагнетательных скважин при ограниченных температурах нагрева полимерного раствора (не более 100º С) не всегда позволяют создавать в пласте оторочку горячего полимерного раствора нужной температуры. С учетом этого было обосновано, что целесообразно нагревать раствор полимера не в поверхностных условиях, а в пласте, прогрев предварительно пласт, нагнетая в него теплоноситель. Теплоноситель (пар, горячая вода) не подвержен температурной деструкции, и его можно нагревать на поверхности до более высокой температуры, чем раствор полимера. Приемистость пласта для теплоносителя выше, чем для раствора полимера. Лабораторными исследованиями доказано, что эффективность процесса по вытеснению нефти из пласта выше, если теплоноситель и холодный раствор полимера закачивать в пласт циклическими оторочками. Данная технология разработки нефтяной залежи предусматривает закачку через нагнетательные скважины последовательно расчетного количества теплоносителя, холодного полимерного раствора и на завершающей стадии закачку воды c температурой не ниже пластовой температуры. Механизм интенсификации добычи нефти и увеличения нефтеизвлечения с применением технологии ЦВПТВ следующий.

При обычном полимерном воздействии закачиваемый раствор полиакриламида проникает, прежде всего, в наиболее проницаемые зоны пласта и приводит к их частичному закупориванию и повышению фильтрационного сопротивления. Закачиваемая в последующем вода обтекает закупоренные зоны и вытесняет нефть из менее проницаемых зон пласта. За счет этого увеличивается охват пласта процессом вытеснения и возрастает нефтеизвлечение.

Изложенный механизм вытеснения нефти осуществляется на сравнительно небольшом (10–15 м) удалении от забоя нагнетательной скважины, поскольку закупоривание высокопроницае-

мых зон препятствует проникновению вязкого (10–15 мПа·с) холодного раствора полимера в более удаленные зоны пласта.

При закачке теплоносителя (в технологии ЦВПТВ) в нагнетательные скважины в пласте создается нагретая зона. При последующей закачке холодного раствора полиакриламида он, проходя через разогретую зону пласта, нагревается, вязкость его при этом снижается (до 2–3 мПа·с), и нагретый раствор ПАА проникает не только в высокопроницаемые зоны пласта, но и в менее проницаемые, вследствие чего происходит более полный охват пласта воздействием нагретым раствором полимера, чем при холодном полимерном воздействии. В данной технологии используются водорастворимые полимеры, не способные отвердевать в пласто-

вых условиях. Чередование закачиваемых оторочек теплоносителя и холодного раствора полимера предусматривает поочередное прогревание пласта и полимерного раствора за счет накопленного тепла в пласте. При этом происходит опережение фронта концентрации полимера, то есть превышение радиуса фронта концентрации полимера в пласте по отношению к радиусу фронта температуры. За счет этого обеспечивается вытеснение нефти раствором полимера не только в прогретой зоне пласта, но и за ее пределами. При продвижении раствора полимера по пласту он охлаждается за счет отбора тепла минеральным скелетом пласта, естественных теплопередач в кровлю и подошву пласта. Однако он охлаждается, уже проникнув не только в высокопроницаемые зоны пласта, но и в менее проницаемые, в которые он может проникнуть только в нагретом состоянии, то есть в состоянии сниженной вязкости. Охладившись, полимерный раствор временно теряет подвижность.

Нагнетаемый в пласт во второй оторочке теплоноситель выполняет две функции: вытесняющего агента и теплоносителя. Поскольку прогрев пласта происходит во времени, то теплоноситель, имея значительно меньшую вязкость, чем даже нагретый раствор полимера, сначала встречает преграду в виде «набравшего» вязкость (остывшего) раствора полимера в заполненных им зонах, обходит эти зоны через низкопроницаемые участки, нагревая и вытесняя оттуда нефть. В то же время, по мере закачки теплоносителя в пласт, постепенно нагревается и раствор полимера, снижается его вязкость, он приобретает подвижность и снова начинает продвигаться по пласту, высвобождая высокопроницаемые зоны для продвижения по ним нефти, притекающей из низкопроницаемых зон под действием теплоносителя.

После промыва высокопроницаемых и низкопроницаемых зон вновь возникает потребность в кальматации промытых зон.

Для этого вновь закачивается раствор полимера, и так далее. Значительная эффективность данного процесса достигается за счет того, что раствор полимера проходит не только по прогретой зоне, но и проникает в непрогретые зоны пласта. В непрогретой зоне раствор полимера охлаждается, проникая при этом лишь в наиболее проницаемые зоны и блокируя их. При этом происходит вытеснение нефти из этих зон, а вследствие повышения вязкости раствора полимера по мере его охлаждения в этих участках происходит как бы «запирание» потока раствора полимера, а в прогретой зоне он проникает в менее проницаемые области.

Цикличность закачки в пласт предусматривает цикличность нагрева и охлаждения полимерного раствора и, следовательно, цикличность изменения его вязкости, то есть проникающей и закупоривающей способности в пласте. Происходит благоприятное саморегулирование воздействий рабочих агентов по всему объему пласта, за счет чего обеспечивается интенсификация добычи нефти.

Для получения наиболее результативных показателей необходимо строго выдерживать заданные (расчетные) технологические параметры процесса ЦВПТВ: температура, темп нагнетания и продолжительность закачки теплоносителя и раствора полимера в каждом цикле. Температура прогретой зоны пласта не должна превышать температуру начала термодеструкции полимера (100º С) и в то же время должна соответствовать эффективной температуре. За эффективную температуру принимается температура, дальнейшее повышение которой не приводит к существенному снижению вязкости нефти в пластовых условиях для данного месторождения.

Импульсно-дозированное воздействие (ИДТВ) на пласт.

Сущность технологии ИДТВ заключается в циклическом попеременном вводе в пласт через нагнетательные скважины теплоносителя и холодной воды (с формированием волнового теплового фронта) в строго расчетных пропорциях с созданием в пласте «эффективной» температуры эф T. Основное преимущество механизма ИДТВ над известными способами паротеплового воздействия (ПТВ) и воздействия горячей водой (ВГВ) состоит в том, что в технологии ИДТВ при многократном повторе расчетных циклов «пар–холодная вода» активизируется вытеснение нефти из поровых блоков (матриц) трещиновато-порового пласта, что в целом приводит к увеличению нефтеизвлечения из залежи.

Важным преимуществом импульсно-дозированного теплового воздействия является энергосбережение, которое достигается за счет ограничения объема вводимого в пласт теплоносителя уровнем прогрева пласта до так называемой «эффективной» температуры, определяемой по кривой зависимости вязкости нефти от температуры. Понятие «эффективная температура» впервые обосновано для тепловых методов и имеет принципиальное значение. Эффективная температура (Tэф) – это температура, выше которой расход теплоносителя не приводит к существенному снижению вязкости и приросту КИН. Особый циклический режим нагнетания и энергосбережение, присущие технологии ИДТВ, позволили преодолеть установленный ранее «барьер» 700–800 м в качестве предельной глубины залегания залежей вязкой нефти для применения термических методов.

При ИДТВ в периоды нагнетания импульсов холодной воды парогенераторные установки используются для теплового воздействия на других элементах залежи, что позволяет интенсифицировать охват пласта тепловым воздействием и увеличивать добычу нефти.

При использовании ИДТВ на 25% уменьшаются капитальные вложения по сравнению с ВГВ, а эксплуатационные затраты –на 27%. Себестоимость добычи нефти с учетом конечного нефтеизвлечения становится близкой к заводнению. Технология ИДТВ запатентована практически внедрена на Гремихинском месторождении нефти (Удмуртская Республика). При использовании ИДТВ на этом месторождении достигается увеличение коэффициента нефтеизвлечения (для Гремихинского месторождения до 0, 37 по сравнению с естественным режимом – 0, 06, заводнением – 0, 12 и технологией ВГВ – 0, 27). Расход теплоносителя при ИДТВ составляет 3, 4 т на извлечение одной тонны нефти, а при воздействии горячей водой (ВГВ) – 6, 4 т.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-30; Просмотров: 1268; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь