Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Назначение, классификация и основные характеристики выпрямителей.



Назначение, классификация и основные характеристики выпрямителей.

Выпрямитель – это электротехническое устройство, предназначенное для преобразования переменного напряжения в постоянное.

Основными элементами полупроводниковых выпрямителей являются трансформатор и вентили, с помощью которых обеспечивается одностороннее протекание тока в цепи нагрузки, в результате чего переменное напряжение преобразуется в пульсирующее. Для сглаживания пульсаций выпрямленного напряжения к выходным зажимам выпрямителя подключают электрический сглаживающий фильтр. Для регулирования или стабилизации выпрямленного напряжения и тока потребителя к выходным зажимам фильтра подключают регулятор или стабилизатор (стабилизатор может быть включён и на стороне переменного тока выпрямителя).

Структурная схема выпрямителя с фильтром и стабилизатором приведена на рис.В3. Режимы работы и параметры отдельных элементов выпрямителя, фильтра, регулятора и стабилизатора согласуются с заданными условиями работы потребителя постоянного тока, поэтому основная задача теории выпрямительных устройств сводится к определению расчётных соотношений, позволяющих по заданному режиму работы потребителя определить электрические параметры элементов стабилизатора, регулятора, фильтра, а также вентилей и трансформатора выпрямителя и затем произвести выбор этих элементов по каталогу или, если это необходимо, рассчитать их.

Схемы выпрямителей классифицируют по ряду признаков (рис.1.1).

1. В зависимости от числа фаз питающего источника переменного напряжения различают схемы однофазного (рис1.1 а, б, в) и трёхфазного (рис1.1 г, д, е) питания.

2. В зависимости от количества импульсов тока, протекающего за полный период по вторичным обмоткам трансформатора:

а) Однотактные – ток протекает один раз за полный период. Отношение частоты пульсаций выпрямленного напряжения (mП) к частоте сети в однотактных схемах равно числу фаз вторичной обмотки трансформатора. В таких схемах кроме простейшего однофазного однополупериодного выпрямителя обязательно выводится нулевая точка трансформатора (рис.1.1 а, б, г).

б) Двухтактные – в каждой фазе вторичной обмотки трансформатора ток протекает дважды за один период, причём в противоположных направлениях. Кратность пульсаций выпрямленного напряжения в таких схемах в 2 раза больше, чем число фаз вторичной обмотки трансформатора. Эти схемы также называют мостовыми (рис.1.1 в, д). В мостовых схемах ток во вторичной цепи всегда проходит последовательно по двум вентилям.

3. По степени сложности:

а) простые (рис1.1 а – д);

б) сложные – несколько простых схем выпрямителей соединяют последовательно или параллельно (рис.1.1 е).

4. По числу пульсаций за период питающего напряжения:

а) с однофазными пульсациями (рис.1.1 а);

б) с двухфазными пульсациями (рис.1.1 б, в);

в) схема с трёхфазными пульсациями (рис1.1 г);

г) схемы с четырёхфазными пульсациям;

д) схемы с шестифазными пульсациями (рис.1.1 д, е);

е) схемы с двенадцатифазными и более пульсациями. Представляют собой последовательное и параллельное соединения предыдущих схем.

5. В зависимости от назначения выпрямители могут быть управляемыми и неуправляемыми.

Возможны различные модификации схем выпрямителей: с включением вторичной обмотки трансформатора в треугольник, в зигзаг, несимметричные схемы, схемы с нагрузкой шунтированной диодом и др.

 

Однофазные однополупериодные выпрямители.

 

 

 


 

Однофазные двухполупериодные выпрямители.

Выпрямитель с нулевым выводом.

Принципиальная схема выпрямителя приведена на рисунке 1.1б.

Коммутация токов в выпрямителях.

 

 


 

Трехфазные выпрямители с нулевым выводом.


 

Трехфазные мостовые выпрямители.

 


Управляемый однофазный выпрямитель с нулевым выводом.

 

 


Мостовой управляемый выпрямитель трехфазного тока.

 


 

Недостатки

Существуют недостатки умножителей напряжения перед обычными выпрямителями:

· более высокий уровень пульсаций;

· обычно большее внутреннее сопротивление, сильно зависящее от ёмкости применённых в них конденсаторов.

 

Эти особенности определили сферу применения умножителей напряжения — чаще всего в устройствах небольшой мощности, нетребовательных к качеству питания.

 

 

Рис. 3.4-16. Схема несимметричного удвоителя напряжения (а) и временные диаграммы, поясняющие его работу (б)

 

 

Еще одна схема удвоителя напряжения, составленная из двух однофазных однополупериодных выпрямителей с емкостным фильтром, дана на рис. 3.4-17. Ее называютсимметричным удвоителем напряжения (или схемой Латура). Входящие в схему выпрямители по входу включены параллельно, а по выходу последовательно.

Рис. 3.4-17. Симметричный удвоитель напряжения (схема Латура)

 

При положительной полуволне входного напряжения работает выпрямитель на диоде VD1, заряжая конденсатор C1, а при отрицательной полуволне — выпрямитель на диоде VD2, заряжающий конденсатор C2. В результате и C1, и C2 заряжаются до уровня входного напряжения, а при их последовательном включении суммарное напряжение равно удвоенному входному.

Основное преимущество схемы Латура перед несимметричным удвоителем напряжения (рис. 3.4-16) состоит в том, что рабочее напряжение обоих конденсаторов составляет Uвх max.

Коэффициент умножения подобных схем можно увеличивать, наращивая количество звеньев умножения.

 

 

Умножитель из диодных мостов

Особенности: хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов. На рисунке изображен удвоитель напряжения, но число каскадов в умножителе может быть увеличено.


 

Схема удвоения напряжения.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

U2 - Напряжение вторичной обмотки трансформатора

Uн – Напряжение на нагрузке.

Отличительной особенностью данной схемы является то, что в одном полупериоде переменного напряжения от вторичной обмотки трансформатора “заряжается” один конденсатор, а во втором полупериоде от той же обмотки– другой. Поскольку конденсаторы включены последовательно, то результирующее напряжение на обоих конденсаторах ( на нагрузке) в два раза выше, чем можно получить от той же вторичной обмотки в схеме с однополупериодным выпрямителем.

Преимущества: Вторичную обмотку трансформатора можно расчитывать на значительно меньшее напряжение.

Недостатки: Значительные токи через вентили выпрямителя, Уровень пульсаций значительно выше, чем в схемах двухполупериодных выпрямителей.

Эта же схема может использоваться еще в двух вариантах:

Левая схема предназначена для получения двух напряжений питания одной полярности, правая – для получения двуполярного напряжения с общей точкой.

Во втором варианте схемы характеристики выпрямителя соответствуют характеристикам однополупериодного выпрямителя.

 

Удвоитель тока.

Из распространенных схем неуправляемых выпрямителей (однополупериодных, двухполупериодных и мостовых) наиболее эффективны двухполупери-одные. Сравнение основных их видов - со средней точкой и с удвоителем тока - показывает, что хотя оба выпрямителя имеют одинаковые динамические характеристики, удвоитель больше подходит для использования в области больших токов, так как в нем меньше соединений и потерь на вторичной стороне, а отсутствие средней точки дает возможность выбрать нечетное число витков.

Схемы двухполупериодных выпрямителей со средней точкой и удвоителем тока с силовым трансформатором, фильтром и нагрузкой приведены на рис.1. Выпрямитель с удвоителем тока (см. рис.1 б) имеет ряд преимуществ перед выпрямителем со средней точкой (см. рис. 1а): в нем используется двухобмоточный трансформатор, который легко интегрируется с дросселями L1, L2; пульсации токов находятся в противофазе, следовательно, пульсации тока нагрузки меньше.

Рис. 1.а Двухполупериодные выпрямители со средней точкой

Рис. 1.б Двухполупериодные выпрямители с удвоителем тока

Рис. 1.в Синхронные выпрямители на МДП-транзисторах

С целью снижения статических потерь вместо диодов можно использовать синхронные выпрямители на МДП-транзисторах (см. рис.1 в). В такой схеме транзистор VT1 открыт при положительном напряжении Up, а транзистор VT2 -при отрицательном напряжении Up. Транзисторами можно управлять от схемы управления и непосредственно от вторичной обмотки трансформатора.

Сравним статические потери выпрямительного диода и синхронного выпрямителя при токе через выпрямитель I=10 А:

Pd=IUd=10·1=10 Вт,

Ps=I2Rds=100·0, 03=3 Вт,

Где Pd-потери для диода, Ps-потери для МДП-транзистора, Ud-1 В - прямое падение напряжения на диоде, Rds= 0, 03 Ом -сопротивление канала транзистора.

Применение синхронных выпрямителей особенно актуально при низких выходных напряжениях (1, 6; 3, 3; 5 В), когда падение напряжения на диоде может составлять треть выходного напряжения (для U0=3, 3 В). Однако современные МДП-транзисторы целесообразно применять в синхронных выпрямителях с выходным напряжением до 48 В и выше. Сопротивление Rds транзисторов на максимальное напряжение 150-200 В не превышает 20 мОм.

 

Схемы резонансных фильтров.

Резонансные сглаживающие фильтры используются на выходе выпрямительных устройств, в которых переменная составляющая выпрямленного напряжения близка по уровню к первой гармонике. Также они используются для аппаратуры, которая не чувтсвительна к высшим гармоническим составляющим напряжения. При больших отклонениях частоты питающнго напряжения происходит “расстройка” относительно собственной частоты контура, что ухудшает сглаживающие свойства фильтра. Поэтому не допускается использование таких фильтров при больших отклонениях частоты питающего напряжения. Изменение тока нагрузки приводит к изменению индуктивности контура, что также уменьшает значение коэффициента сглаживания. Для исключения этого явления в дроссель вводят зазор или обмотку обратной связи, поддерживающую постоянство индуктивности. Последнее приводит к громозкости фильтра и уменьшению его к.п.д., поэтому рекомендуется использовать такие фильтры при постонстве тока нагрузки. Для подавления гармонических составляющих напряжения, кроме первой, используют дополнительные реактивные элементы. По сравнению с другими пассивными сглаживающими фильтрами этот тип фильтров менее громоздкий и имеет больший к.п.д.

Существует две модификации резонансных сглаживающих фильтров:

 


Фильтр с параллельным колебательным контуром ( фильтр “пробка”)


Получим выражение для коэффициента сглаживания фильтра:

где ,

Rк-потери в дросселе колебательнного контура.

Фильтр(контур) настраивается на частоту первой гармоники и создается большее сопротивление Zк для ее прохождения. Кондесатор Cф сглаживает гармоники высших порядков.

 

Резонансный фильтр с последовательным колебательным контуром (режекторный фильтр)


Получим выражение для коэффициента сглаживания фильтра:

 


При настройке колебательного контура ZК на частоту первуй гармоники, сопротивление контура становится равной потерям в дросселе RК и первая гармоника выпрямленного напряжения не проходит в нагрузку.

 


 

Последовательный инвертор

 

Электрическая схема, рабочие фазы и формы выходных сигналов последовательного инвертора изображены на рис. 1. Такая схема на­зывается последовательным инвертором, поскольку в ней нагрузочное сопротивление включено последовательно с емкостью. R - нагрузочное сопротивление, L и С - коммутационные элементы. Такой тип ин­вертора содержит два тиристора. Рассмотрим подробнее фазы работы такой схемы.

 

Фаза I. Тиристор Т1 включается в момент времени to. Начинается заряд конденсатора от источника питания. Последовательная цепь R, L и С формирует синусоидальный ток через нагрузочное сопротивление и выполняет функцию демпфирующей цепи. Когда ток в цепи умень­шается до нуля, тиристор Т1 запирается. Напряжение на нагрузочном сопротивлении находится в фазе с током тиристора. Формы напряжений VL и Vc можно получить с помощью теоремы Кирхгофа: (VL+ Vc = E), величины VL и Vc должны удовлетворять условиям этого уравнения.

 

Фаза II. Тиристор Т2 не должен включаться сразу после того, как ток через тиристор Г, уменьшится до нуля. Для лучшего запирания тиристора Т1, к нему необходимо приложить небольшое обратное на­пряжение. Если тиристор Т2 включается без запаздывания, или мертвая зона отсутствует, напряжение источника питания замыкается через открытые тиристоры Т1 и Тг.. Если оба тиристора находятся в закрытом состоянии, то VR = 0, VL= 0, следовательно, L di/dt = 0 и конденсатор С остается незаряженным.

 

Фаза III. В момент времени t2 тиристор Т2 включается и инициирует отрицательный полупериод. Конденсатор разряжается через L, R и Т2. Следует заметить, что электрический ток через нагрузочное сопротивле­ние R протекает в противоположном направлении. В момент времени, когда этот ток уменьшается до нуля, тиристор Т2 выключается. Формы напряженийVL и Vc можно получить с помощью теоремы Кирхгофа: (VL + Vc = 0), величины VL и Vc должны удовлетворять условиям этого уравнения.

 


Рис.1 - Последовательный инвертор:

а) Электрическая схема; б) Фазы работы схемы; в) Формы напряжений и токов в цепях последовательногоинвертора

 

Если тиристор Т1 запустить с задержкой на величину мертвого времени, вышеупомянутые процессы повторятся.

Преимущества:

1. Простая конструкция.

2. Выходное напряжение близко к синусоидальному.

Недостатки:

1. Индуктивность L и конденсатор С имеют большие габариты.

2. Источник питания используется только в течение положительного полупериода.

3. В выходном напряжении имеются высшие гармоники из-за наличия мертвой зоны.

Последовательный инвертор лучше всего подходит для высокочастотных устройств, так как для требуемых значений L и С уменьшаются их габариты. Время периода для одного цикла составляет:

T0=T + 2td. где T = l/ft и td - мертвое время.

 

Выходная частота последовательного инвертора всегда меньше резонансной частоты вследствие наличия мертвой зоны. Значение выходной частоты может варьироваться путем изменения мертвого времени.

 


 

 

Рис.2. -Форма выходного напряжения последовательного инвертора

 

 


 

Недостатки

1.Номинальное напряжение конденсатора должно быть 2Е.

2.Ток источника питания не является чистым постоянным током.

3.Колебания тока источника питания, являются причиной дополнительного выделения тепла в первичной цепи параллельного инвертора.

 


 

Рис.7в - Формы токов инвертора Мак-Мюррея–Бедфорда

 


 

Рис. 1. Условное обозначение IGBT Рис. 2. Схема соединения транзисторов в

Единой структуре IGBT

 

Коммерческое использование IGBT началось с 80-х годов и уже претерпела четыре стадии своего развития.

I поколение IGBT (1985 г.): предельные коммутируемые напряжения 1000 В и токи 200 А в модульном и 25 А в дискретном исполнении, прямые падения напряжения в открытом состоянии 3, 0-3, 5 В, частоты коммутации до 5 кГц (время включения/выключения около 1 мкс).

II поколение (1991 г.): коммутируемые напряжения до 1600 В, токи до 500 А в модульном и 50 А в дискретном исполнении; прямое падение напряжения 2, 5-3, 0 В, частота коммутации до 20 кГц ( время включения/ выключения около 0, 5 мкс).

III поколение (1994 г.): коммутируемое напряжение до 3500 В, токи 1200 А в модульном исполнении. Для приборов с напряжением до 1800 В и токов до 600 А прямое падение напряжения составляет 1, 5-2, 2 В, частоты коммутации до 50 кГц (времена около 200 нс).

IV поколение (1998 г.): коммутируемое напряжение до 4500 В, токи до 1800 А в модульном исполнении; прямое падение напряжения 1, 0-1, 5 В, частота коммутации до 50 кГц (времена около 200 нс).

 

IGBT являются продуктом развития технологии силовых транзисторов со структурой металл-оксид-полупроводник, управляемых электрическим полем (MOSFET-Metal-Oxid-Semiconductor-Field-Effect-Transistor) и сочетают в себе два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления). Эквивалентная схема включения двух транзисторов приведена на рис. 2. Прибор введён в силовую цепь выводами биполярного транзистора E (эмиттер) и C (коллектор), а в цепь управления - выводом G (затвор).

Таким образом, IGBT имеет три внешних вывода: эмиттер, коллектор, затвор. Соединения эмиттера и стока (D), базы и истока (S) являются внутренними. Сочетание двух приборов в одной структуре позволило объединить достоинства полевых и биполярных транзисторов: высокое входное сопротивление с высокой токовой нагрузкой и малым сопротивлением во включённом состоянии.

Рис. 3. Диаграмма напряжения и тока управления

 

Схематичный разрез структуры IGBT показан на рис. 4, а. Биполярный транзистор образован слоями p+ (эмиттер), n (база), p (коллектор); полевой - слоями n (исток), n+ (сток) и металлической пластиной (затвор). Слои p+ и p имеют внешние выводы, включаемые в силовую цепь. Затвор имеет вывод, включаемый в цепь управления. На рис. 4, б изображена структура IGBT IV поколения, выполненого по технологии " утопленного" канала (trench-gatetechnology), позволяющей исключить сопротивление между p-базами и уменьшить размеры прибора в несколько раз.

 

Рис. 4. Схематичный разрез структуры IGBT: а-обычного (планарного); б-выполненого по " trench-gatetechnology"

 

Процесс включения IGBT можно разделить на два этапа: после подачи положительного напряжения между затвором и истоком происходит открытие полевого транзистора (формируется n - канал между истоком и стоком). Движение зарядов из области n в область p приводит к открытию биполярного транзистора и возникновению тока от эмиттера к коллектору. Таким образом, полевой транзистор управляет работой биполярного.

Для IGBT с номинальным напряжением в диапазоне 600-1200 Вв полностью включённом состоянии прямое падение напряжения, так же как и для биполярных транзисторов, находится в диапазоне 1, 5-3, 5 В. Это значительно меньше, чем характерное падение напряжения на силовых MOSFET в проводящем состоянии с такими же номинальными напряжениями.

С другой стороны, MOSFET c номинальными напряжениями 200 В и меньше имеют более низкое значение напряжения во включённом состоянии, чем IGBT, и остаются непревзойдёнными в этом отношении в области низких рабочих напряжений и коммутируемых токов до 50 А.

По быстродействию IGBT уступают MOSFET, но значительно превосходят биполярные. Типичные значения времени рассасывания накопленного заряда и спадания тока при выключении IGBT находятся в диапазонах 0, 2-0, 4 и 0, 2-1, 5 мкс, соответственно.

Область безопасной работы IGBT позволяет успешно обеспечить его надёжную работу без применения дополнительных цепей формирования траектории переключения при частотах от 10 до 20 кГц для модулей с номинальными токами в несколько сотен ампер. Такими качествами не обладают биполярные транзисторы, соединённые по схеме Дарлингтона.

Так же как и дискретные, MOSFET вытеснили биполярные в ключевых источниках питания с напряжением до 500 В, так и дискретные IGBT делают то же самое в источниках с более высокими напряжениями (до 3500 В).

 


 

Логарифмический усилитель

Логарифмический усилитель имеет нелинейную амплитудную характеристику (рисунок 12), соответствующую логарифмической зависимости выходного напряжения от входного Uвых = log( Uвх ). Такой усилитель иногда применяется в тех случаях, когда необходимо уменьшить динамический диапазон усиливаемых сигналов, так как он усиливает сигналы малой амплитуды с большим коэффициентом усиления, чем сигналы большой амплитуды.

Рисунок 11. Амплитудная характеристика логарифмического усилителя

 

Логарифмический усилитель обычно выполняется на основе инвертирующего усилителя на ОУ, в котором в качестве элемента обратной связи применяется нелинейный элемент, имеющий логарифмическую вольтамперную характеристику – диод (рисунок 12, а).

 

Рисунок 12. Логарифмический (а) и антилогарифмический (б) усилители на основе ОУ

 

Напоминаем, что зависимость тока диода Iд от падения напряжения на нем Uд описывается выражением

,

где I0 – тепловой ток диода; j Т – температурный потенциал (примерно равный 0, 025 В).

 

На основании (3) и (4) имеем

Iд = Iвх = Uвх / R и Uвых = – Uд,

Откуда . (26)

Измерительные выпрямители.

Во многих устройствах обработки аналоговых сигналов, например, в измерительных схемах, необходимо выделение либо составляющих только одной полярности (однополупериодное выпрямление), либо определение абсолютного значения сигнала (двухполупериодное выпрямление). Эти операции могут быть реализованы на пассивных диодно-резистивных цепях, но значительное прямое падение напряжения на диодах (0, 5 – 1 В) и нелинейность его вольт-амперной характеристики вносят в этом случае значительные погрешности, особенно при обработке слабых сигналов. Применение ОУ позволяет в значительной степени ослабить влияние реальных характеристик диодов.

Однополупериодные выпрямители. Схемы однополупериодных выпрямителей, приведенные на рис. 28, отличаются друг от друга передаваемой волной входного сигнала (положительной или отрицательной) и знаком коэффициента передачи (инвертирующие и неинвертирующие). Неинвертирующие однополупериодные выпрямители имеют более высокое входное сопротивление, чем инвертирующие. В инвертирующем выпрямителе диод VD1 открывается на соответствующей полуволне сигнала, обеспечивая его передачу на выход с коэффициентом, определяемым отношением резисторов R1 и R2. Диод VD2 смещен при этом в обратном направлении. Неинвертирующий выпрямитель при передаче попускаемой полуволны работает примерно также, однако их функционирование в режиме отсечки существенно различается.

Рис. 28. Схемы однополупериодных выпрямителей

Как в инвертирующем, так и в неинвертирующем выпрямителях диод VD2 введен для повышения их быстродействия. Если исключить этот диод, то в режиме отсечки ОУ входит в состояние насыщения.

При переходе в режим пропускания ОУ сначала должен выйти из насыщения, а затем его выходное напряжение будет достаточно долго нарастать до уровня открывания диода VD1. Введение диода VD2предотвращает насыщение ОУ и ограничивает перепад его выходного напряжения при смене полярности входного сигнала. В неинвертирующей схеме диод VD2 обеспечивает ограничение выходного напряжения ОУ путем замыкания его выхода на землю, поэтому ОУ должен допускать короткое замыкание на выходе в течение неограниченного времени. Кроме того, в неинвертирующей схеме операционный усилитель должен иметь большое допустимое дифференциальное входное напряжение и малое время восстановления из режима ограничения выходного тока.

Существенным недостатком представленных выше схем является их высокое выходное сопротивление, имеющее, к тому же, нелинейный характер.

Двухполупериодные выпрямители. Наиболее просто реализуются прецизионные двухполупериодные выпрямители с незаземленной нагрузкой, например, стрелочным миллиамперметром. Схема такого устройства приведена на рис. 29. Здесь операционный усилитель служит в качестве управляемого по напряжению источника тока. Поэтому выходной ток не зависит от падения напряжения на диодах и сопротивления нагрузки Rн.


Рис. 29. Двухполупериодный выпрямитель с незаземленной нагрузкой

 

Мостовая схема выпрямляет обе полуволны входного сигнала, при этом выпрямленный ток протекает через нагрузку:

Iвых=|Uвх|/R.

Эта схема не требует согласования резисторов и имеет высокое входное сопротивление.

Простейшая схема двухполупериодного выпрямителя с заземленной нагрузкой приведена на рис. 30а. Здесь используется дифференциальное включение ОУ.

Рис. 30. Двухполупериодный выпрямитель с заземленным диодом

 

Положительная полуволна входного напряжения запирает диод, в результате чего схема работает в режиме неинвертирующего усилителя с коэффициентом передачи, равным единице и Uвых = Uвх. Отрицательная полуволна открывает диод. Если бы прямое падение напряжение на диоде было равно нулю, то схема работала бы в режиме инвертирующего усилителя с единичным коэффициентом и Uвых=–Uвх. Схема очень проста, но из-за неравенства нулю прямого напряжения на диоде последнее равенство выполняется с большой погрешностью.

Точность можно повысить, если в схеме на рис. 30а заменить диод VD1 моделью идеального диода на ОУ2 (рис. 30б). Здесь при положительной полуволне входного сигнала выходное напряжение ОУ2 будет отрицательным, в результате чего диод VD1 закроется, а VD2 откроется. Выход усилителя ОУ2 будет соединен с общей точкой практически накоротко, и цепь обратной связи усилителя разомкнута. Усилитель ОУ1 работает в режиме неинвертирующего повторителя. При отрицательной полуволне входного сигнала диод VD1 открыт, а диод VD2 закрыт. Цепь обратной связи ОУ2 замкнута через открытый диод VD1, поэтому напряжение между входами ОУ2, а стало быть и на неинвертирующем входе ОУ1, близко к нулю. Тогда усилитель ОУ1 работает в режиме инвертирующего повторителя.

Схема на рис. 30б довольно проста, но имеет разное входное сопротивление для положительных и отрицательных сигналов и требует согласования резисторов R1. Усилитель ОУ2 должен допускать короткое замыкание выхода и большое дифференциальное напряжение.

Лучшие характеристики имеет схема, приведенная на рис. 31, в которой применено инвертирующее включение операционных усилителей. Схема включает сумматор на ОУ2 и однополупериодный выпрямитель на ОУ1 (см. левую нижнюю схему на рис. 28).


Рис. 31. Схема выпрямителя, в которой ОУ работают в линейном режиме

 

Прежде всего рассмотрим принцип работы ОУ1. При положительном входном напряжении он работает как инвертирующий усилитель. В этом случае напряжение U2 отрицательно, т.е. диод VD1 проводит, а VD2 закрыт, поэтому U1 = –Uвх. При отрицательном входном напряжении U2 положительно, т.е. диод VD1закрыт, а VD2 проводит и замыкает цепь отрицательной обратной связи усилителя, которая препятствует насыщению усилителя ОУ1. Поэтому точка суммирования остается под нулевым потенциалом. Поскольку диод VD1 закрыт, напряжение U1 также равно нулю. Справедливы соотношения:

(35)

 


 

Усилители-ограничители.

Наряду с ограничением сигнала осуществляют усиление. Усилители-ограничители могут формировать импульс ы необходимой амплитуды из малых сигналов порядка нескольких мВ. Основой усилителя- ограничителя может быть любой усилитель (операционный или на транзисторах). При использовании операционных усилителей, цепь ограничения сигнала включается в обратную связь.

Рассмотрим построение усилителя- ограничителя на основе инвертирующего усилителя.

Рис. 7.13. Усилитель- ограничителя на основе инвертирующего усилителя.

 

Для ограничения сигнала на выходе параллельно сопротивлению обратной связи R2 включают две параллельные цепи параллельного ограничителя.

Рис.7.14.Осциллограммы сигналов на усилителе-ограничителе.

 

При непроводящем состоянии диода VD1 и VD2 схема работает как обычный инвертирующий усилитель с коэффициентом усиления , но если положительное напряжение на выходе достигнет величины и начнет его превышать, то произойдет открывание диода VD1. Напряжение на R2 и всей цепи обратной связи будет зафиксировано на уровне , следовательно, будет зафиксировано и выходное напряжение.

Диод VD1 закроется тогда, когда напряжение на выходе снизится до .

При открытом состоянии VD1 за счет нелинейной обратной связи в цепи диода VD1 происходит уменьшение коэффициента усиления так, чтобы выходное напряжение оставалось неизменным.

Цепь VD2 в первый полупериод не работает вообще. Во второй полупериод на выходе усилителя возникает отрицательное напряжение. Теперь VD1 не работает, а происходит открывание VD2, как только отрицательное напряжение на выходе превысит величину . Амплитуда должна существенно превышать необходимые уровни ограничения.

При открывании VD2 зафиксируется противоположная полярность напряжения на цепи обратной связи и, соответственно, напряжение на выходе, таким образом осуществляется ограничение и фиксирование уровня входного сигнала, при этом входной сигнал может быть очень мал.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-12; Просмотров: 3428; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.134 с.)
Главная | Случайная страница | Обратная связь