Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Культивирование микроорганизмов
Культивирование микроорганизмов– это один из основных приемов в микробиологии. Для роста и развития микроорганизмов в природе и в лабораторных условиях необходимо наличие питательных веществ для энергетических и конструктивных реакций. Требования разных групп микроорганизмов к источникам энергии и химическим элементам определяются их метаболическими возможностями. Выращивание и поддержание микробных культур в лаборатории основано на моделировании естественных условий обитания данного организма в лаборатории, а также на знании особенностей обмена веществ. Культивирование является основной стадией технологического процесса и во многом определяет количественные и качественные характеристики производства биопрепаратов. На стадии культивирования осуществляется накопление как самой биомассы, так и продуктов метаболизма (жизнедеятельности) микроорганизмов. Началом исследований по культивированию микроорганизмов является 1830 год, когда Каньяр де Латур, Кютцинг и Шван установили, что во многих бродильных процессах «повинны» рост и размножение дрожжей и других микроорганизмов. Либих и многие другие химики были противниками такого мнения, что затормозило эти исследования на 20 лет. В 1850 году Луи Пастер, исследуя физиологию дрожжей и бактерий, ввел асептические методы исследований и на минимальных питательных средах доказал, что спиртово-, молочно-, уксусно- и маслянокислое брожения вызываются различными микроорганизмами, обладающими различными потребностями в питательных веществах и кислороде. Первая наиболее полноценная среда была приготовлена учеником Л. Пастера Ролэномв 1869 году для грибов рода Aspergillus. Хотя в распоряжении Л. Пастера не было метода чистых культур, но ему с учениками удалось, пользуясь элективными средами, доказать потребность микроорганизмов в главных и второстепенных компонентах среды и в источниках энергии. В 1870 году Р. Кох ввел в практическую микробиологию метод чистых культур, гарантировавших получение на предложенных им плотных питательных средах чистых культур только определенных видов бактерий.
Потребность в сложных веществах, необходимых для микроорганизмов и именуемых в настоящее время «факторами роста», впервые установил Вильдье в 1901 году. Он доказал, что витамин В является одним из факторов, необходимых для роста дрожжей. На первых этапах микробиологических исследовании культивирование микроорганизмов осуществляли в пробирках или колбах путем выращивания их на поверхности плотных или жидких сред. Для более объемного промышленного культивирования микроорганизмов с целью получения из них различных биопрепаратов стали переходить на использование стеклянной посуды большой емкости (матрасы, бутыли). Причем, в такой посуде выращивали микроорганизмы главным образом на плотных агаровых средах. Новым этапом в культивировании микроорганизмов явился примененный в 1933 году Клюйвером и Пергиным способ встряхивания колб с жидкой средой на качалках с принудительной подачей стерильного воздуха. На этой основе был разработан так называемый глубинный метод выращивания микроорганизмов. Промышленный биотехнологический процесс, в котором для производства коммерческих продуктов используют клеточные системы или микроорганизмы, обычно включает три ключевые стадии: — подготовительную (обработка сырья, используемого в качестве источника питательных веществ, и приготовление, если это необходимо, питательных сред); — биотехнологическую (рост микроорганизмов-мишеней в большом — обычно объемом более 100 л — биореакторе (ферментация) с последующим образованием нужного метаболита, например антибиотика, аминокислоты или белка (биотрансформация)); — получения готовой продукции (очистка целевого продукта от компонентов культуральной среды или от клеточной массы). Ключевым направлением биотехнологии является интенсификация производственных процессов. Этого можно достичь как путем использования новых высокопродуктивных биообъектов, так и путем применения эффективных технологических режимов. Необходимо подобрать оптимальный субстрат, разработать конструкцию аппарата, оптимизировать условия культивирования биообъекта, обеспечить автоматический контроль за протеканием процесса, разработать способ выделения и очистки готового целевого продукта.
Питательные среды Для культивирования бактерий используют питательные среды, к которым предъявляется ряд требований. 1. Питательность. Бактерии должны содержать все необходимые питательные вещества. 2. Изотоничность. Бактерии должны содержать набор солей для поддержания осмотического давления, определенную концентрацию хлорида натрия. 3. Оптимальный рН (кислотность) среды. Кислотность среды обеспечивает функционирование ферментов бактерий; для большинства бактерий составляет 7, 2–7, 6. 4. Оптимальный электронный потенциал, свидетельствующий о содержании в среде растворенного кислорода. Он должен быть высоким для аэробов и низким для анаэробов. 5. Прозрачность (наблюдался рост бактерий, особенно для жидких сред). 6. Стерильность (отсутствие других бактерий). Классификация питательных сред 1. По происхождению: 1) естественные (молоко, желатин, картофель и др.); 2) искусственные – среды, приготовленные из специально подготовленных природных компонентов (пептона, аминопептида, дрожжевого экстракта и т. п.); 3) синтетические – среды известного состава, приготовленные из химически чистых неорганических и органических соединений (солей, аминокислот, углеводов и т. д.). 2. По составу: 1) простые – мясопептонный агар, мясопептонный бульон, агар Хоттингера и др.; 2) сложные – это простые с добавлением дополнительного питательного компонента (кровяного, шоколадного агара): сахарный бульон, желчный бульон, сывороточный агар, желточно-солевой агар, среда Китта—Тароцци, среда Вильсона—Блера и др. 3. По консистенции: 1) твердые (содержат 3–5 % агар-агара); 2) полужидкие (0, 15—0, 7 % агар-агара); 3) жидкие (не содержат агар-агара). Агар- полисахарид сложного состава из морских водорослей, основной отвердитель для плотных (твердых) сред. 4. В зависимости от назначения ПС различают: • дифференциально-диагностические • элективные • селективные • ингибиторные • среды для поддержания культуры • накопительные (насыщения, обогащения) • консервирующие • контрольные. Дифференциально-диагностические - это сложные среды, на которых микроорганизмы разных видов растут по-разному, в зависимости от биохимических свойств культуры. Они предназначены для идентификации видовой принадлежности микроорганизмов, широко используются в клинической бактериологии и проведении генетических исследований. Селективные, ингибиторные и элективные ПС предназначены для выращивания строго определенного вида микроорганизма. Эти среды служат для выделения бактерий из смешанных популяций и дифференцирования их от сходных видов. В их состав добавляют различные вещества, подавляющие рост одних видов и не влияющие на рост других.
Среду можно сделать селективной за счет величины рН. В последнее время в качестве веществ, придающих средам селективный характер, применяют антимикробные агенты, такие как антибиотики и другие химиотерапевтические вещества. Элективные ПС нашли широкое применение при выделении возбудителей кишечных инфекций. При добавлении малахитовой или бриллиантовой зелени, солей желчных кислот (в частности, таурохолево-кислого натрия), значительного количества хлорида натрия или лимоннокислых солей подавляется рост кишечной палочки, но рост патогенных бактерий кишечной группы не ухудшается. Некоторые элективные среды готовят с добавлением антибиотиков. Среды для поддержания культуры составляют так, чтобы в них не было селективных веществ, способных вызывать изменчивость культур. Накопительные ПС (обогащения, насыщения) — это среды, на которых определенные виды культур или группы культур растут быстрее и интенсивнее сопутствующих. При культивировании на этих средах обычно не применяются ингибиторные вещества, а, наоборот, создают благоприятные условия для определенного присутствующего в смеси вида. Основой сред накопления являются желчь и ее соли, тетратионат натрия, различные красители, селенитовые соли, антибиотики и др. Консервирующие среды служат для первичного посева и транспортировки исследуемого материала. Выделяют также контрольные ПС, которые применяют для контроля стерильности и общей бактериальной обсемененности антибиотиков. 5. По набору питательных веществ выделяют: • минимальные среды, которые содержат лишь источники питания, достаточные для роста; • богатые среды, в состав которых входят многие дополнительные вещества. 6. По масштабам использования ПС подразделяются на: > производственные (технологические); > среды для научных исследований с ограниченным по объему применением. Производственные ПС должны быть доступными, экономичными, удобными в приготовлении и использовании для крупномасштабного культивирования. Среды для научных исследований, как правило, бывают синтетическими и богатыми по набору питательных веществ. Выбор сырьевых источников для конструирования питательных сред Качество ПС во многом определяется полноценностью состава питательных субстратов и исходного сырья, используемого для их приготовления. Большое разнообразие видов сырьевых источников ставит сложную задачу выбора наиболее перспективных, пригодных для конструирования ПС требуемого качества. Определяющую роль в данном вопросе играют, прежде всего, биохимические показатели состава сырья, от которых зависит выбор способа и режимов его переработки с целью наиболее полного и эффективного использования содержащихся в нем питательных веществ. Для получения ПС с особо ценными свойствами применяют прежде всего традиционные источники белка животного происхождения, а именно мясо крупного рогатого скота (КРС), казеин, рыбу и продукты ее переработки. Наиболее полно разработаны и широко применяются ПС на основе мяса КРС. Учитывая дефицит кильки каспийской, широко применяемой в недалеком прошлом, для получения рыбных питательных основ стала использоваться более дешевая и доступная непищевая продукция рыбной промышленности - сухой криль, отходы переработки мяса криля, филетированный минтай и его перезрелую икру. Наибольшее же распространение получила рыбная кормовая мука (РКМ), удовлетворяющая требованиям биологической ценности, доступности и относительной стандартности. Довольно широкое распространение получили ПС на основе казеина, который содержит все компоненты, имеющиеся в молоке: жир, лактозу, витамины, ферменты и соли. Однако необходимо отметить, что в связи с удорожанием продуктов переработки молока, а также повышением спроса на казеин на мировом рынке, применение его носит несколько ограниченный характер. Из непищевых источников белка животного происхождения в качестве сырья для конструирования полноценных ПС необходимо выделить кровь убойных животных, которая богата биологически активными веществами и микроэлементами и содержит продукты клеточного и тканевого обмена. Гидролизаты крови сельскохозяйственных животных используются в качестве заменителей пептона в дифференциально-диагностических питательных средах. К другим видам белоксодержащего сырья животного происхождения, которые могут быть использованы для конструирования ПС, относятся: плацента и селезенка КРС, сухой белковый концентрат - продукт переработки мясных отходов, спилковая обрезь, получаемая при обработке кожи, эмбрионы домашних птиц - отход вакцинного производства, кровезаменители с истекшим сроком годности, творожная сыворотка, мягкие ткани моллюсков и ластоногих. Перспективно использование тушек пушных зверей из зверохозяйств, крови КРС, получаемой на мясокомбинате, обезжиренного молока и молочной сыворотки (отходы маслозаводов). В целом же ПС, приготовленные из сырья животного происхождения, имеют высокое содержание основных питательных компонентов, являются полноценными и сбалансированными по аминокислотному составу и достаточно хорошо изучены. Из продуктов растительного происхождения в качестве белкового субстрата для ПС возможно использование кукурузы, сои, гороха, картофеля, люпина и др. Однако, растительное сельскохозяйственное сырье содержит белок, несбалансированный состав которого зависит от условий выращивания культур, а также липиды в больших количествах, чем продукты животного происхождения. Обширную группу составляют ПС, изготавливаемые из белкового сырья микробного происхождения (дрожжи, бактерии и т.д.). Аминокислотный состав микроорганизмов, служащих субстратом для приготовления ПС, хорошо изучен, а биомасса используемых микроорганизмов является полноценной по составу питательных веществ и характеризуется повышенным содержанием лизина и треонина. Разработан целый ряд ПС комбинированного состава из белковых субстратов различного происхождения. К ним относятся дрожжевая казеиновая питательная среда, дрожжевая мясная и т.д. Основой большинства известных ПС являются гидролизаты казеина, мяса КРС и рыбы (до 80%). Удельный же вес непищевого сырья в технологии конструирования ПС составляет всего 15% и в дальнейшем требует увеличения. Используемое для получения питательной основы (ПС) непищевое сырье должно удовлетворять определенным требованиям, а именно быть: ^ полноценным (количественный и качественный состав сырья должен, в основном, удовлетворять питательным потребностям микроорганизмов и клеток, для которых разрабатываются ПС); ^ доступным (иметь достаточно обширную сырьевую базу); ^ технологичным (затраты на внедрение в производство должны осуществляться с использованием имеющегося оборудования или существующей технологии); ^ экономичным (затраты на внедрение технологии при переходе на новое сырье и его переработку не должны превосходить нормы затрат для получения целевого продукта); ^ стандартным (иметь длительные сроки хранения без изменения физико-химических свойств и питательной ценности)
Популярное:
|
Последнее изменение этой страницы: 2016-07-13; Просмотров: 3757; Нарушение авторского права страницы