Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Механистическая и электромагнитная картины мира



Новое надобно созидать в поте лица, а старое само продолжает существовать и твердо держится на костылях привычки.

А. И. Герцен

Галилей и Кеплер, отталкиваясь от динамических и кинематических законов Аристотеля, переосмысливали его механику и в итоге перехода от геоцентризма к гелиоцентризму пришли к своим кинематическим законам. Эти законы предопределили принципиально единую для земных и небесных тел механику Ньютона со всеми сформированными им классическими законами механики, включая универсальный закон всемирного тяготения. Галилей, рассматривая движение свободного падения тел, первым ввел понятие инерции и сформулировал принцип относительности для механических движений, известный как принцип относительности Галилея. Решающий вклад в становление механики внес И. Ньютон.

Стройную логическую систему научной картине мира придали законы механики, разработанные Исааком Ньютоном и изложенные в его гениальной работе " Математические начала натуральной философии" в 1687 году. Ньютон внес в научную картину мира не только новое содержание, но и принципиально новый стиль однозначного объяснения природы. Ньютон создал основы теории гравитационного поля, он вывел закон тяготения, определяющий силу тяготения, которая действует на данную массу в любой точке пространства, если заданы масса и положение тела, служащего источником сил тяготения, т. е. притягивающего к себе другие тела.

Динамические законы Ньютона не только следуют из соответствующих кинематических законов Галилея и Кеплера, но и сами могут быть положены в основу всех трех кинематических законов Кеплера и обоих кинематических законов Галилея, а также всевозможных теоретически ожидаемых отклонений от


них из-за сложного строения и взаимных гравитационных возмущений взаимодействующих тел.

Единую механику для всех земных и небесных тел, с общими для них законами инерции, динамики, действия и противодействия, а также взаимного тяготения, впервые создал И. Ньютон.

Согласно законам механики И. Ньютона гравитационные силы связывают все без исключения тела природы, они являются не специфическим, а общим взаимодействием. Законы тяготения определяют отношение материи к пространству и всех материальных тел друг к другу. Тяготение создает в этом смысле реальное единство Вселенной. Объяснение характера движения небесных тел и даже предсказание новых планет Солнечной системы было триумфом ньютоновской теории тяготения.

Поэтому долгое время в науке доминировала механистическая картина мира. Здесь можно выделить четыре следующих принципиальных момента:

1. Мир строился на едином фундаменте — на законах ме
ханики Ньютона. Все наблюдаемые в природе превращения, а
также тепловые явления на уровне микроявлений сводились к
механике атомов и молекул — их перемещениям, столкновениям,
сцеплениям, разъединениям. Открытие в середине XIX в. зако
на сохранения и превращения энергии, казалось, окончательно
доказывало механическое единство мира.

2. В механистической картине мира все причинно-следственные связи однозначные, здесь господствует лапласовый детерменизм.

3. В механистической картине мира отсутствует развитие — мир в целом таков, каким он был всегда. Механистическая картина мира фактически отвергала качественные изменения, сводя все к изменениям чисто количественным.

4. Механистическая картина исходила из представления, что микромир аналогичен макромиру.

По самой своей сути эта картина мира являлась метафизической, все многообразие мира сводилось к механике.

Во второй половине XIX в. на основе исследований М. Фара-дея и Д. Максвелла возникла электромагнитная картина мира.


Согласно этой картине материя существует в двух видах — в виде вещества и в виде поля, причем между указанными видами материи имеется непереходимая грань: вещество не превращается в поле, а поле не превращается в вещество.

Количественное изучение электрических явлений началось с работ Кулона (1785 г.), установившего сначала закон взаимодействия электрических зарядов и распространившего его позднее на взаимодействие " магнитных зарядов". Однако вплоть до 1820 г. электрические и магнитные явления рассматривали как различные явления, не связанные между собой.

Открытие Эрстедом в 1820 г. магнитного действия тока показало, что между магнитными и электрическими явлениями существует связь и что магнитные действия можно получить при помощи электрических токов. Магнитное действие токов было детально изучено Ампером, который пришел к заключению, что все магнитные явления в природе, в том числе и связанные с постоянными магнитами, вызваны электрическими токами (теория молекулярных токов Ампера).

Дальнейшими результатами того периода мы обязаны М. Фарадею. Из них особое значение имело открытие электромагнитной индукции. Фарадей исходил из основной идеи о взаимной связи явлений природы. Он считал, что если ток способен вызывать магнитные явления, то и обратно, при помощи магнитов или других токов, можно получить электрические токи. В результате настойчивости и многих попыток Фарадей действительно открыл в 1831 г. это явление, которое еще более укрепило представление о связи между электричеством и магнетизмом.

Второй важнейшей идеей в работах Фарадея было признание основной, определяющей роли промежуточной среды в электрических явлениях. Фарадей не допускал действия на расстоянии, которое, как мы сейчас хорошо знаем, физически бессодержательно, и считал, что электрические магнитные взаимодействия передаются промежуточной средой и что именно в этой среде разыгрываются основные электрические и магнитные процессы.


В работах Максвелла идеи Фарадея подверглись дальнейшему углублению и развитию и были превращены в строгую математическую теорию. В теории Максвелла мысль о тесной связи электрических и магнитных явлений получила окончательное оформление в виде двух основных положений теории. Поэтому теория Максвелла явилась завершением важного этапа в развитии учения об электричестве и привела к классическому представлению об электрическом поле, содержащем в общем случае и электрическое, и магнитное поля, связанные между собой и способные взаимно превращаться друг в друга.

Уравнения Максвелла содержат в себе все основные законы электрического и магнитного полей, включая электромагнитную индукцию, и поэтому являются общими уравнениями электромагнитного поля в покоящихся средах.

Теория Максвелла не только объяснила уже известные факты, но и предсказала новые и важные явления. Совершенно новым в этой теории явилось предположение Максвелла о магнитном поле токов смещения. На основе этого предположения Максвелл теоретически предсказал существование электромагнитных волн, т. е. переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. Теоретическое исследование свойств электромагнитных волн привело затем Максвелла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. В дальнейшем электромагнитные волны действительно были получены на опыте, а еще позднее электромагнитная теория света, а с нею и вся теория Максвелла получили полное и блестящее подтверждение.

Если в XVIII в. стремились свести все к механике, то теперь все, включая и ряд механических явлений (например, трение, упругость), стремятся свести к электромагнетизму. Вне сферы электромагнетизма остается только тяготение. В качестве элементарных структур, из которых построена вся материя, рассматриваются всего три частицы — электрон, протон и фотон. Фотоны — кванты электромагнитного поля. При рассмотрении электромагнитного поля наряду с волновыми используются так-


же корпускулярные (фотонные) представления, утвердившиеся в естествознании как корпускулярно-волновой дуализм.

Электромагнитная картина мира формировалась не только в XIX в., она продолжала формироваться в течение трех десятилетий XX в. Она использовала не только учение об электромагнетизме и достижения атомистики, но также некоторые идеи современной физики. Исследуя проблемы теплового изучения и фотоэффекта, Альберт Эйнштейн в самом начале XX столетия пришел к выводу о квантовании энергии светового излучения, а в 1916 г. он ввел в рассмотрение понятие порции самого излучения (световые кванты), обладающие не только определенной энергией, но и определенным импульсом. С 1926 г. световые кванты стали называться фотонами. Таким образом, стали известны два типа полей — электромагнитное и гравитационное. Соответственно есть два фундаментальных взаимодействия.

Конечно, электромагнитная картина мира по сравнению с механистической картиной мира представляла собой значительный шаг вперед в познании окружающего мира. Многие детали электромагнитной картины мира сохранились в современной естественно-научной картине мира: понятие физического поля, электромагнитная природа сил, ядерная модель атома, дуализм корпускулярных и волновых свойств и многое другое. В то же время в электромагнитной картине мира, как и в механистической, господствовали однозначные причинно-следственные связи, по-прежнему все было жестко определено, характерна метафизическая омертвелость, внутренние противоречия отсутствовали. Открытые Максвеллом и Больцманом вероятностные закономерности не признавались фундаментальными, и они не включались ни в механистическую, ни в электромагнитную картину мира. Столь же однозначными, жесткими представлялись и максвелловские законы, управляющие электромагнитным полем.

Девятнадцатый век подвел к пониманию диалектики природы, но сам век еще оставался на позициях метафизического материализма. Нужен был диалектический материализм.


Т


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-13; Просмотров: 622; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.01 с.)
Главная | Случайная страница | Обратная связь