Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Ядро как основной регуляторный компонент клетки. Его строение и функции.



Ядро - обязательная часть клеток эукариот. Это основной регуляторный компонент клет­ки. Оно отвечает за хранение и передачу наследственной информации, управляет всеми обменными процессами в клетке . Не органоид, а компонент клетки.

Ядро состоит из:

1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой.

2) ядерный сок, или кариоплазму, — полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра;

3) хромосомы, которые в неделящемся ядре видны только с помощью специальных методов микроскопии. Совокупность хромосом клетки называется кариотипом. Хроматин на окрашенных препаратах клетки представляет собой сеть тонких тяжей (фибрилл), мелких гранул или глыбок.

4) одно или несколько сферических телец — ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

два состояния ядра:

1. интерфазное ядро - имеет ядер. оболочку- кариолемму.

2. ядро при делений клетки. присутствует только хроматин в разном состоянии.

ядрышки включают две зоны:

1. внутренняя- фибриллярная- молекул белка и пре РНК

2. наружняя- гранулярная- формируют субъединицы рибосом.

Оболочка ядра состоит из двух мембран, разделенных перинуклеарным пространством. Обе они пронизаны многочисленными порами, благодаря которым возможен обмен веществами между ядром и цитоплазмой.

Основные компоненты ядра - хромосомы, образованные из молекулы ДНК и различных белков. В световом микроскопе они хорошо различимы лишь в период клеточного деления (митоза, мейоза). В неделящейся клетке хромосомы имеют вид длинных тонких нитей, распределенных по всему объему ядра.

Главные функции клеточного ядра следующие:

  1. хранение информации;
  2. передача информации в цитоплазму с помощью транскрипции, т. е. синтеза переносящей информацию и-РНК;
  3. передача информации дочерним клеткам при репликации - делении клеток и ядер.
  4. регулирует биохимические, физиологические и морфологические процессы в клетке.

В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего выходят в цитоплазму. Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками. Компартмент для ядра — кариотека — образован за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов ядерной оболочки. Полость ядерной оболочки называется - люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной- жесткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой.

12. Двумембранные органоиды (митохондрии, пластиды). Их строение и функции.

Митохондрии это структуры округлой или палочковидной, нередко ветвящейся формы толщиной 0, 5 мкм и длиной обычно до 5—10 мкм.

Оболочка митохондрий состоит из двух мембран, различающихся по химическому составу, набору ферментов и функциям. Внутренняя мембрана образует впячивания листовидной (кристы) или трубчатой (тубулы) формы. Пространство, ограниченное внутренней мембраной, составляет матрикс органеллы. В нем с помощью электронного микроскопа обнаруживаются зерна диаметром 20—40 нм. Они накапливают ионы кальция и магния, а также полисахариды, например гликоген.
В матриксе размещен собственный аппарат биосинтеза белка органеллы. Он представлен 2—6 копиями кольцевой и лишенной гистонов (как у прокариот) молекулы ДНК, рибосомами, набором транспортных РНК (тРНК), ферментами редупликации ДНК, транскрипции и трансляции наследственной информации. Главная функция митохондрий состоит в ферментативном извлечении из определенных химических веществ энергии (путем их окисления) и накоплении энергии в биологически используемой форме (путем синтеза молекул аденозинтрифосфата —АТФ). В целом этот процесс называется окислительным фосфорилированием. Среди побочных функций митохондрий можно назвать участие в синтезе стероидных гормонов и некоторых аминокислот (глутаминовая).

Пластиды – это полуавтономные (могут существовать относительно автономно от ядерной ДНК клетки) двумембранные органоиды, характерные для фотосинтезирующих эукариотных организмов. Различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты. Совокупность пластид в клетке называют пластидомом. Каждый их этих типов при определенных условиях может переходить один в другой. Как и митохондрии, пластиды содержат собственные молекулы ДНК. Поэтому они также способны размножаться независимо от деления клетки. Пластиды характерны только для растительных клеток.

Хлоропласты. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом. Группа тилакоидов, уложенных наподобие стопки монет, называется граной. Граны связываются друг с другом уплощенными каналами — ламеллами. В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой. В строме имеются кольцевая «голая» ДНК, рибосомы, ферменты цикла Кальвина, зерна крахмала. Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н+. Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Хлоропласты низших растений называют хроматофорами.

Лейкопласты. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Амилопласты —синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях и др. Хромопласты считаются конечной стадией развития пластид.

Пластиды могут взаимно превращаться друг в друга: лейкопласты - хлоропласты - хромопласты.

Одномембранные органоиды (ЭПС, аппарат Гольджи, лизосомы). Их строение и функции.

ЭПС.

Канальцевая и вакуолярная системы образованы сообщающимися или отдельными трубчатыми или уплощенными (цистерна) полостями, ограниченными мембранами и распространяющимися по всей цитоплазме клетки. В названной системе выделяют шероховатую и гладкую цитоплазматическую сети. Особенность строения шероховатой сети состоит в прикреплении к ее мембранам полисом. В силу этого она выполняет функцию синтеза определенной категории белков, преимущественно удаляемых из клетки, например секретируемых клетками желез. В области шероховатой сети происходит образование белков и липидов цитоплазматических мембран, а также их сборка. Плотно упакованные в слоистую структуру цистерны шероховатой сети являются участками наиболее активного белкового синтеза и называются эргастоплазмой.

Мембраны гладкой цитоплазматической сети лишены полисом. Функционально эта сеть связана с обменом углеводов, жиров и других веществ небелковой природы, например стероидных гормонов (в половых железах, корковом слое надпочечников). По канальцам и цистернам происходит перемещение веществ, в частности секретируемого железистой клеткой материала, от места синтеза в зону упаковки в гранулы. В участках печеночных клеток, богатых структурами гладкой сети, разрушаются и обезвреживаются вредные токсические вещества, некоторые лекарства (барбитураты). В пузырьках и канальцах гладкой сети поперечно-полосатой мускулатуры сохраняются (депонируются) ионы кальция, играющие важную роль в процессе сокращения.

Комплекс Гольджи -представляет собой стопку плоских мембранных мешочков, которые называются цистернами. Цистерны полностью изолированы друг от друга и не соединяются между собой. По краям от цистерн ответвляются многочисленные трубочки и пузырьки. От ЭПС время от времени отшнуровываются вакуоли (пузырьки) с синтезированными веществами, которые перемещаются к комплексу Гольджи и соединяются с ним. Вещества, синтезированные в ЭПС, усложняются и накапливаются в комплексе Гольджи. Функции комплекса Гольджи : 1- В цистернах комплекса Гольджи происходит дальнейшее химическое преобразование и усложнение веществ, поступивших в него из ЭПС. Например, формируются вещества, необходимые для обновления мембраны клетки (гликопротеиды, гликолипиды), полисахариды.

2- В комплексе Гольджи происходит накопление веществ и их временное «хранение»

3- Образованные вещества «упаковываются» в пузырьки (в вакуоли) и в таком виде перемещаются по клетке.

4- В комплексе Гольджи образуются лизосомы (сферические органоиды с расщепляющими ферментами).

Лизосомы - мелкие сферические органоиды, стенки которых образованы одинарной мембраной; содержат литические (расщепляющие) ферменты. Сначала лизосомы, отшнуровавшиеся от комплекса Гольджи, содержат неактивные ферменты. При определенных условиях их ферменты активизируются. При слиянии лизосомы с фагоцитозной или пиноцитозной вакуолью образуется пищеварительная вакуоль, в которой происходит внутриклеточное переваривание различных веществ.

Функции лизосом : 1-Осуществляют расщепление веществ, поглощенных в результате фагоцитоза и пиноцитоза. Биополимеры расщепляются до мономеров, которые поступают в клетку и используются на ее нужды. Например, они могут быть использованы для синтеза новых органических веществ или могут подвергаться дальнейшему расщеплению для получения энергии.

2- Разрушают старые, поврежденные, избыточные органоиды. Ращепление органоидов может происходить и во время голодания клетки.

Вакуоли - сферические одномембранные органоиды, представляющие собой резервуары воды и растворенных в ней веществ. К вакуолям относятся: фагоцитозные и пиноцитозные вакуоли, пищеварительные вакуоли, пузырьки, отшнуровывающиеся от ЭПС и комплекса Гольджи. Вакуоли животной клетки - мелкие, многочисленные, но их объем не превышает 5% от всего объема клетки. Их основная функция - транспорт веществ по клетке, осуществление взаимосвязи между органоидами.

В клетке растений на долю вакуолей приходится до 90% объема. В зрелой растительной клетки вакуоль одна, занимает центральное положение. Мембрана вакуоли растительной клетки - тонопласт, ее содержимое - клеточный сок. Функции вакуолей в растительной клетке: поддержание клеточной оболочки в напряжении, накопление различных веществ, в том числе отходов жизнедеятельности клетки. Вакуоли поставляют воду для процессов фотосинтеза. Могут входить:

- запасные вещества, которые могут использоваться самой клеткой (органические кислоты, аминокислоты, сахара, белки). - вещества, которые выводятся из обмена веществ клетки и накапливаются в вакуоли (фенолы, дубильные вещества, алкалоиды и др.) - фитогормоны, фитонциды,

- пигменты (красящие вещества), которые придают клеточному соку пурпурный, красный, синий, фиолетовый цвет, а иногда желтый или кремовый. Именно пигменты клеточного сока окрашивают лепестки цветков, плоды, корнеплоды

14.Немембранные органоиды (микротрубочки, клеточный центр, рибосомы). Их строение и функции. Рибосома - немембранный органоид клетки, осуществляющий биосинтез белка. Состоит из двух субъединиц - малой и большой. Рибосома состоит из 3-4 молекул р-РНК, образующих ее каркас, и нескольких десятков молекул различных белков. Рибосомы синтезируются в ядрышке. В клетке рибосомы могут располагаться на поверхности гранулярной ЭПС или в гиалоплазме клетки в виде полисом. Полисома - это комплекс и-РНК и нескольких рибосом, считывающих с нее информацию. Функция рибосом - биосинтез белка. Если рибосомы располагаются на ЭПС, то синтезируемые ими белки используются на нужды всего организма, рибосомы гиалоплазмы синтезируют белки на нужды самой клетки. Рибосомы прокариотических клеток мельче, чем рибосомы эукариот. Такие же мелкие рибосомы находятся в митохондриях и пластидах.

Микротрубочки - полые цилиндрические структуры клетки, состоящие из несократимогобелка тубулина. Микротрубочки не способны к сокращению. Стенки микротрубочки образованы 13 нитями белка тубулина. Микротрубочки располагаются в толще гиалоплазмы клеток.

Реснички и жгутики - органоиды движения. Главная функция - передвижение клеток или перемещение вдоль клеток окружающей их жидкости или частиц. В многоклеточном организме реснички характерны для эпителия дыхательных путей, маточных труб, а жгутики - для сперматозоидов. Реснички и жгутики отличаются только размерами - жгутики более длинные. В их основе - микротрубочки, расположенные по системе 9(2) + 2. Это значит, что 9 двойных микротрубочек (дуплетов) образуют стенку цилиндра, в центре которого располагаются 2 одиночные микротрубочки. Опорой ресничек и жгутиков являются базальные тельца. Базальное тельце имееет цилиндрическую форму, образовано 9 тройками (триплетами) микротрубочек, в центре базального тельца микротрубочек нет.

Кл е точный центр - митотический центр, постоянная структура почти всех животных и некоторых растительных клеток, определяет полюса делящейся клетки (см. Митоз). Клеточный центр обычно состоит из двух центриолей — плотных гранул размером 0, 2—0, 8 мкм, расположенных под прямым углом друг к другу. При образовании митотического аппарата центриоли расходятся к полюсам клетки, определяя ориентировку веретена деления клетки. Поэтому правильнее К. ц. называть митотическим центром, отражая этим его функциональное значение, тем более что лишь в некоторых клетках К. ц. расположен в ее центре. В ходе развития организма изменяются как положение К. ц. в клетках, так и форма его. При делении клетки каждая из дочерних клеток получает пару центриолей. Процесс их удвоения происходит чаще в конце предыдущего клеточного деления. Возникновение ряда патологических форм деления клетки связано с ненормальным делением К. ц.

14.


Поделиться:



Популярное:

  1. A. Оценка будущей стоимости денежного потока с позиции текущего момента времени
  2. A. Смещение суставной головки через вершину суставного бугорка на передний его скат
  3. A.27. Процедура ручной регулировки зеркала заднего вида
  4. B. С нарушением непрерывности только переднего полукольца
  5. Bizz: Белье стирается вперемешку с чужим или как?
  6. Bizz: Допустим, клиент не проверил карман, а там что-то лежит, что может повредит аппарат. Как быть в такой ситуации?
  7. Cсрочный трудовой договор и сфера его действия.
  8. F. Оценка будущей стоимости денежного потока с позиции текущего момента времени
  9. G) определение путей эффективного вложения капитала, оценка степени рационального его использования
  10. H) Такая фаза круговорота, где устанавливаются количественные соотношения, прежде всего при производстве разных благ в соответствии с видами человеческих потребностей.
  11. I AM HAPPY AS A KING (я счастлив как король)
  12. I. Какие первичные факторы контролируют нервную активность, то есть количество импульсов, передаваемых эфферентными волокнами?


Последнее изменение этой страницы: 2016-07-13; Просмотров: 2097; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь