Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Предмет, задачи и методы генетики. Этапы развития генетики, роль отечественных ученых в ее развитии. Борьба материализма и идеализма в истории генетики. Критика евгеники, расизма и социалдарвинизма.



Генетиканаука о наследственности и изменчивости живых организмов и методах управления ими. В ее основу легли закономерности наследственности, установленные чешским ученым Грегором Менделем (1822—1884) при скрещивании различных сортов гороха.

К задачам генетики относятся исследования: 1) механизмов хранения и передачи генетической информации от родительских форм к дочерним; 2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды; 3) типов, причин и механизмов изменчивости всех живых существ; 4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.

При изучении наследственности и изменчивости на разных уровнях организации живой материи (молекулярный, клеточный, организменный, популяционный) в генетике используют разнообразные методы современной биологии: гибридологический, цитогенетический, биохимический, генеалогический, близнецовый, мутационный и др. Однако среди множества методов изучения закономерностей наследственности центральное место принадлежит гибридологическому методу. Суть его заключается в гибридизации (скрещивании) организмов, отличающихся друг от друга по одному или нескольким признакам, с последующим анализом потомства. Этот метод позволяет анализировать закономерности наследования и изменчивости отдельных признаков и свойств организма при половом размножении, а также изменчивость генов и их комбинирование.

Генеалогический метод — составление родословного дерева многих поколений и изучение типа наследования (доминантный или рецессивный, сцепленный с полом или аутосомный), частоты и интенсивности проявления наследственных свойств. Результатом изучения обычно является определение типа наследования, а также риска проявления наследственных нарушений у потомков;

Цитогенетический метод — изучение хромосомных наборов здоровых и больных людей. Результат изучения — определение количества, формы, строения хромосом, особенности хромосомных наборов обоих полов, а также хромосомных нарушений;

Биохимический метод — изучение изменений в биологических параметрах организма, связанных с изменением генотипа. Результат изучения — определение нарушений в составе крови, в околоплодной жидкости и т. д.;

Близнецовый метод — изучение генотипических и фенотипических особенностей однояйцевых и разнояйцевых близнецов. Результат изучения — определение относительного значения наследственности и окружающей среды в формировании и развитии человеческого организма;

Популяционный метод — изучение частоты встречаемости аллелей и хромосомных нарушений в популяциях человека. Результат изучения — определение распространения мутаций и естественного отбора в популяциях человека.

 

Вторичное открытие законов Менделя принадлежит трём учёным – Г. де Фризу (Голландия), К.Корренсу (Германия), Э.Чермаку (Австрия). Название новой науки – генетика – было предложено в 1906 г. английским учёным В.Бэтсоном (от латинского genetikos – относящийся к происхождению, рождению).

Главной отличительной чертой второго этапа истории генетики (~1912 до 1925 г.) было создание и утверждение хромосомной теории наследственности (Т.Морган)

Третий этап истории генетики (~1925 – 1940 г.) ознаменован в первую очередь открытием возможности искусственно вызвать мутации.

Первые данные о том, что мутации можно вызвать искусственно были получены в 1925 г. в СССР Г.А.Надсоном и Г.С.Филипповым в опытах по облучению дрожжей радием.

Н.И.Вавилов изучая мутации у родственных видов, установил закон гомологичных рядов в наследственной изменчивости. Этот закон позволяет предсказать наличие определенного признака у разных родов одного семейства, если его другие роды имеют данный признак

Евге́ ника («хорошего рода», «породистый») — учение о селекции применительно к человеку, а также о путях улучшения его наследственных свойств. Учение призвано бороться с явлениями вырождения в человеческом генофонде. Различают «позитивную» и «негативную» евгенику (хотя грань между ними условна).

Цель позитивной евгеники — содействие воспроизводству людей с признаками, которые рассматриваются, как ценные для общества (отсутствие наследственных заболеваний, хорошее физическое развитие, иногда — высокий интеллект).

Цель негативной евгеники — прекращение воспроизводства лиц, имеющих наследственные дефекты, либо тех, кого в данном обществе считают физически или умственно неполноценными.

Раси́ зм — совокупность воззрений, в основе которых лежат положения о физической и умственной неравноценности человеческих рас и о решающем влиянии расовых различий на историю и культуру. Расизм часто критикуется с культурологических позиций, например, критики обосновывают низкие результаты негроидных меньшинств по интеллектуальным тестам их социальным положением, условиями труда и быта.

Социа́ льный дарвини́ зм (социа́ л-дарвини́ зм) — социологическая теория, согласно которой закономерности естественного отбора и борьбы за существование, выявленные Чарлзом Дарвином в природе, распространяются на отношения в человеческом обществе.

 

Организация наследственного материала у прокариот и эукариот. Генный, хромосомный и геномный уровень организации наследственного материала. Строение гена у прокариот и эукариот.

По химической организации материала наследственности и изменчивости эукариотические и прокариотические клетки принципиально не отличаются друг от друга. Генетический материал у них представлен ДНК. Общим для них является и принцип записи генетической информации, а также генетический код. Одни и те же аминокислоты шифруются у про- и эукариот одинаковыми кодонами. Принципиально одинаковым образом у названных типов клеток осуществляется и использование наследственной информации, хранящейся в ДНК. Однако некоторые особенности организации наследственного материала, отличающие эукариотические клетки от прокариотических, обусловливают различия в использовании их генетической информации.

Наследственный материал прокариотической клетки содержится главным образом в единственной кольцевой молекуле ДНК.

Наследственный материал эукариот больше по объему, чем у прокариот. Он расположен в основном в хромосомах, которые отделены от цитоплазмы ядерной оболочкой.

Значительные отличия имеются в молекулярной организации генов эукариотической клетки. В большинстве из них кодирующие последовательности экзоны прерываются интронными участками, которые не используются при синтезе тРНК, рРНК или пептидов. Эти участки удаляются из первично-транскрибируемой РНК, в связи с чем использование генетической информации в эукариотической клетке происходит несколько иначе. В прокариотической клетке, где наследственный материал и аппарат биосинтеза белка пространственно не разобщены, транскрипция и трансляция происходят почти одновременно. В эукариотической клетке эти два этапа не только пространственно отделены ядерной оболочкой, но и во времени их разделяют процессы созревания мРНК, из которой должны быть удалены неинформативные последовательности.

 

Генный уровень.

Элементарной функциональной единицей генетического аппарата, определяющей возможность развития отдельного признака клетки или организма данного вида, является ген (наследственный задаток, по Г. Менделю). Передачей генов в ряду поколений клеток или организмов достигается материальная преемственность — наследование потомками признаков родителей.

Под признаком понимают единицу морфологической, физиологической, биохимической, иммунологической, клинической и любой другой дискретности организмов (клеток), т.е. отдельное качество или свойство, по которому они отличаются друг от друга.

Хромосомный уровень.

Гены клеток эукариот распределены по хромосомам, образуя ХРОМОСОМНЫЙ уровень организации наследственного материала. Этот уровень организации служит необходимым условием сцепления генов и перераспределения генов родителей у потомков при половом размножении (кроссинговер).

Хромосо́ мы – нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи.

Геномный уровень.

Геном – всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза.

Строение гена.

Исследования, направленные на выяснение химической природы наследственного материала, неопровержимо доказали, что материальным субстратом наследственности и изменчивости являются нуклеиновые кислоты, которые были обнаружены Ф. Мишером (1868) в ядрах клеток гноя. Нуклеиновые кислоты являются макромолекулами, т.е. отличаются большой молекулярной массой. Это полимеры, состоящие из мономеров — нуклеотидов, включающих три компонента: сахар (пентозу), фосфат и азотистое основание (пурин или пиримидин). К первому атому углерода в молекуле пентозы С-1' присоединяется азотистое основание (аденин, гуанин, цитозин, тимин или урацил), а к пятому атому углерода С-5' с помощью эфирной связи — фосфат; у третьего атома углерода С-3' всегда имеется гидроксильная группа — ОН.

Соединение нуклеотидов в макромолекулу нуклеиновой кислоты происходит путем взаимодействия фосфата одного нуклеотида с гидроксилом другого так, что между ними устанавливается фосфодиэфирная связь. В результате образуется полинуклеотидная цепь. Остов цепи состоит из чередующихся молекул фосфата и сахара. К молекулам пентозы в положении С-1' присоединено одно из перечисленных выше азотистых оснований.

 

Ген — единица наследственности и изменчивости. Историческое развитие концепции гена. Дискретность гена. Гипотеза «один ген — один фермент». «Центральная догма молекулярной биологии». Схема реализации генетической информации.

Ген — фрагмент молекулы нуклеиновой кислоты, в котором записан определенный в качественном и количественном отношении объем биологической (генетической) информации. явление заключается прежде всего в процессе конвариантной редупликации, или самовоспроизведении. Путем редупликации ДНК происходит копирование заключенной в генах биологической информации, что обеспечивает преемственность и сохранность (консерватизм) свойств организмов в ряду поколений. Редупликация, таким образом, является основой наследственности.

Историческое развитие концепции гена. 1909 Иогансон постулировал понятие ген. Начало 20 в господствует представление о стабильности, неизменяемости и неделимости гена. Обнаружение сцепления генов привело к модели «бусинки на нити». Конец 1950, американец Берзер показал, что ген является целостной и дискретной единицей, при программировании синтеза белка ген выступает как целостная единица, изменение которой вызывает перестройку структуры белка. Эта единица называется цистроном. Дискретность гена заключается в наличии у гена субъединиц. После 1980 г было обнаружено, что определенные участки ДНК не кодируют белки, а выполняют регуляторную роль. Было показано, что структурные гены имеют кодирующие последовательности — экзоны, которые прерываются некодирующиими последовательностями — интронами.

Гипотеза «один ген — один фермент». Концепция, согласно которой одним геном может кодироваться только один фермент; более строго это соотношение отражено в теории “один ген - один полипептид”, т.к. один фермент может быть гетерополимером и включать полипептидные цепи, кодируемые разными генами.

Центральная догма молекулярной биологии — обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся отнуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

Правильность в воспроизведении однозначной последовательности аминокислот в белковой цепи детерминируется структурой ДНК того генного участка, который, в конечном счете, отвечает за структуру и синтез данного белка. Эти представления служат основным постулатом молекулярной биологии, ее " догмой ". Информация о будущей молекуле белка передается в места его синтеза (в рибосомы) посредником – информационной РНК (иРНК), нуклеотидный состав которой отражает состав и последовательность нуклеотидов генного участка ДНК. В рибосоме строится полипептидная цепь, последовательность аминокислот в которой определяется последовательностью нуклеотидов в иРНК, последовательностью их триплетов. Тем самым центральная догма молекулярной биологии подчеркивает однонаправленность передачи информации: только от ДНК к белку, с помощью промежуточного звена – иРНК (ДНК → иРНК → белок). Для некоторых РНК-содержащих вирусов цепь передачи информации может идти по схеме РНК → иРНК → белок.

Синтез белка подразделяется на несколько этапов:


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-13; Просмотров: 1853; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь