Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Свойства генетического кода и их характеристики.
1. Код триплетен. 2. Код вырожден. 3. Код однозначен. 4. Код коллинеарен. 5. Код неперекрываем. 6. Код универсален. 1) Код триплетен. 3 расположенных рядом нуклеотида несут информацию об одном белке. Таких триплетов может быть 64 (в этом проявляется избыточность генетического кода), но только 61 из них несет информацию о белке (кодоны). 3 триплета называются антикодонами, являются стоп-сигналами, на которых останавливается синтез белка. 2) Код вырожден. Одну аминокислоту могут кодировать несколько кодонов. 3) Код однозначен. Каждый кодон шифрует только одну аминокислоту. 4) Код коллинеарен. последовательность нуклеотидов в гене соответствует последовательности аминокислот в белке. 5) Код неперекрываем. один и тот же нуклеотид не может входить в состав двух разных кодонов, считывание идет непрерывно, подряд, вплоть до стоп-кодона. В коде отсутствуют «знаки препинания». 6) Код универсален. Одинаков для всех живых существ, т.е. один и тот же триплет кодирует одну и ту же аминокислоту. 61. В каких случаях изменение последовательности нуклеотидов в гене не влияет на структуру и функции кодирующего белка? 1) если в результате замены нуклеотида возникает другой кодон, кодирующий ту же аминокислоту; 2) если кодон, образовавшийся в результате замены нуклеотида, кодирует другую аминокислоту, но со сходными химическими свойствами, не изменяющую структуру белка; 3) если изменения нуклеотидов произойдут в меж генных или нефункционирующих участках ДНК. №62. Репликация ДНК. Краткий обзор: Реплика́ ция — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15—20 различных белков, называемый реплисомой. К моменту деления ДНК должна быть реплицирована полностью и только один раз. Репликация проходит в три этапа: 1. Инициация репликации (ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов. В определённом сайте (точка начала репликации) происходит локальная денатурация ДНК, цепи расходятся и образуются две репликативные вилки, движущиеся в противоположных направлениях.). 2. Элонгация (этап биосинтеза молекул нуклеиновых кислот, заключающийся в последовательном присоединении мономеров (нуклеотидов) к растущей цепи ДНК). 3. Терминация репликации (завершающий этап, происходит в тот момент, когда между фрагментами Оказаки происходит заполнение пустых участков нуклеотидами). Основная часть: Поскольку ДНК является молекулой наследственности, то для реализации этого качества она должна точно копировать саму себя и таким образом сохранять всю имеющуюся в исходной молекуле ДНК информацию в виде определенной последовательности нуклеотидов. Это обеспечивается за счет особого процесса, предшествующего делению любой клетки организма, который называется репликацией ДНК - процесса синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. Репликация ДНК происходит в три этапа: 1. Инициация. Заключается в том, что специальные ферменты -ДНК хеликазы, раскручивающие двуцепочечную спираль ДНК, разрывают слабые водородные связи, которые соединяют между собой нуклеотиды двух цепей. В результате цепи ДНК разъединяются, и из каждой цепи «торчат» свободные азотистые основания (возникновение так называемой вилки репликации). 2. Элонгация (этап биосинтеза молекул нуклеиновых кислот, заключающийся в последовательном присоединении мономеров (нуклеотидов) к растущей цепи ДНК). Каждая из двух нитей ДНК служит матрицей для синтеза новой нити. Так как родительские нити антипараллельны, то непрерывная репликация ДНК происходит только на одной нити, которая называется ведущей (лидирующей). Особый фермент ДНК-полимераза начинает двигаться вдоль свободной цепи ДНК от 5'- к З'-концу, помогая присоединиться свободным нуклеотидам, постоянно синтезируемым в клетке, к З'-концу вновь синтезируемой цепи ДНК. Синтез новой цепи на отстающей нити требует постоянного образования новых затравок (т.н. праймеров - коротких фрагментов нуклеиновой кислоты, используемых ДНК - полимеразами для инициации синтеза ДНК) для начала репликации и осуществляется небольшими сегментами по 1000—2000 нуклеотидов в каждом (фрагменты Оказаки). Затравки деградируют после завершения синтеза следующего фрагмента Оказаки. Образованные соседние фрагменты ДНК соединяются ДНК-лигазой. Топоизомераза удаляет супервитки спирали, хеликаза обеспечивает раскручивание двойной спирали, белок SSB обеспечивает стабильность одноцепочечной ДНК. 3. Терминация (завершение) репликации происходит тогда, когда пробелы между фрагментами Оказаки заполнятся нуклеотидами (при участии ДНК-лигазы) с образованием двух непрерывных двойных цепей ДНК и когда встретятся две репликативные вилки. Затем происходит закручивание синтезированных ДНК с образованием суперспиралей.
63. Опишите последовательность процессов, происходящих при репликации ДНК у эукариот Механизмы репликации ДНК прокариот и эукариот существенно различаются в том отношении, что во втором случае синтез ведущей и отстающей цепей ДНК осуществляют разные ДНК-полимеразы (альфа и дельта соответственно), тогда как у E. coli обе цепи ДНК синтезируются димером ДНК-полимеразы III. ДНК-полимераза альфа проводит инициацию синтеза ведущей цепи в точках начала репликации, а ДНК-полимераза дельта осуществляет циклические реинициации синтеза фрагментов Оказаки, по-видимому, распознавая наличие 5'-концевого нуклеотида очередного праймера с последующей диссоциацией от матричной ДНК и присоединением к ней для реинициации синтеза следующего фрагмента Оказаки. Созревание фрагментов Оказаки у эукариот требует удаления РНК-затравок с помощью 5'-> 3'-экзонуклеазы ( белковые факторы FEN-1 или MF-1 ) и РНКазы H1, а также ковалентного соединения фрагментов друг с другом под действием ДНК-лигазы I. В настоящее время не известно, что именно служит пусковым сигналом для начала репликации ДНК в S фазе. Инициирующее событие, после которого начинается синтез ДНК, происходит в определенных местах, называемых " репликационные вилки ". Во время S фазы кластеры репликационных вилок активируются одновременно во всех хромосомах. Положение участков начала репликации в генах может иметь важное биологическое значение. Тот факт, что у ряда вирусов животных репликация начинается в определенных участках генома, позволяет предположить, что места начала репликации представляют собой специализированные последовательности в хромосомной ДНК. Среднее расстояние между местами начала репликации сравнимо со средним расстоянием между соседними петлями хроматина. Таким образом, возможно, что в каждой петле имеется лишь один участок начала репликации. При расхождении двух репликационных вилок от одной точки начала репликации по разные стороны от этой точки родительские нуклеосомы будут попадать в разные дочерние спирали ДНК. В этом случае от точного расположения места начала репликации в транскрипционной единице будет зависеть распределение предсуществующих родительских гистонов между двуми дочерними генами. Не все нуклеосомы абсолютно одинаковы - в разных областях генетического материала структура хроматина различна. Точное положение места начала репликации в гене могло бы поэтому иметь важное биологическое значение, так как определяло бы структуру хроматина этого гена в следующем поколении клеток. Пусковой механизм репликации ДНК явно работает по принципу " все или ничего", поскольку начавшаяся в S фазе репликация ДНК продолжается до полного завершения этого процесса. Контроль процесса репликации по принципу " все или ничего" может осуществляться по меньшей мере двумя различными способами: 1) некая общая система может специфически узнавать каждую хромосомную полосу, деконденсировть ее и тем самым делать все точки начала репликации одновременно доступными для белков, ответственных за образование репликационых пузырей; 2) репликативные белки могут узнавать лишь несколько точек начала репликации из данного набора, после чего начавшаяся локальная репликация будет изменять структуру остального хроматина репликативной единицы таким образом, что станет возможной репликация во всех других начальных точках. Возможно, что критическим моментом в цепи событий, инициирующих репликацию ДНК, является достижение определенной стадии в процессе удвоения центриоли, которая действует и как часть важного центра организации микротрубочек, тесно связанного с интерфазным ядром, и как компонент каждого из полюсов веретена во время митоза. По-видимому, центриоль удваивается путем матричного процесса один раз за клеточный цикл ( рис. 11-19 ). Пока не известно также, чем определяется фиксированная последовательность репликации хромосомных полос. Для объяснения такой последовательности было предложено две гипотезы. Согласно одной из них, различные репликативные белки, каждый из которых специфичен в отношении хромосомных полос опредеоенного типа, синтезируются в фазе S в разное время. Согласно другой гипотезе, которая сейчас кажется более правдоподобной, репликативные белки просто действуют на те участки ДНК, которые для них более доступны; например, в течение фазы S может происходить непрерывная деконденсация хромосом, и хромосомные полосы одна за другой становятся доступными для репликативных белков.
Популярное:
|
Последнее изменение этой страницы: 2016-07-13; Просмотров: 2217; Нарушение авторского права страницы