Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Альтернативный сплайсинг. Механизм. Биологическая роль.
1)Альтернативный сплайсинг – процесс, в ходе которого экзоны, вырезанные из мРНК, объединяются в различных комбинациях, что порождает различные формы зрелой мРНК. Механизм: Процесс соединения одного экзона с другим происходит в участках определенной последовательности нуклеотидов. Донорный сайт сплайсинга всегда заканчивается одним из двух динуклеотидов, обычно – AG.В начале происходит нуклеофильная атака донорного экзона, затем происходит разрезание, кусочек GU заворачивается и присоединяется к А. Затем разрезается вторая часть, первый экзон соединяется со вторым, и образуется интрон. Биологическая роль альтернативного сплайсинга для многоклеточных эукариот состоит в том, что он является ключевым механизмом увеличения разнообразия белков, а также позволяет осуществлять сложную систему регуляции экспрессии генов, в том числе тканеспецифической. 2. Альтернативный сплайсинг – процесс, в ходе которого экзоны, вырезанные из мРНК, объединяются в различных комбинациях, что порождает различные формы зрелой мРНК. Как следствие, происходит образование разных изоформ одного и того же белка. Механизм. Процесс соединения одного экзона с другим происходит в участках определенной последовательности нуклеотидов. Донорный сайт сплайсинга всегда заканчивается одним из двух динуклеотидов, обычно – AG. В начале происходит нуклеофильная атака донорного экзона, затем происходит разрезание, кусочек GU заворачивается и присоединяется к А. Затем разрезается вторая часть, первый экзон соединяется со вторым, и образуется интрон. С ростом размеров гена в хромосоме его белок-кодирующая часть увеличивается незначительно, а количество интронов в гене растет. С ростом числа интронов растет число сайтов сплайсинга и вероятность их повреждения. Поэтому для генов с большим числом интронов потеря функции при мутации может быть связана не с белок- кодирующей частью ДНК, а с регуляторными элементами сплайсинга. Биологическая роль. Альтернативный сплайсинг предоставляет клетке возможность разнообразить репертуар своих полезных белков, не меняя при этом самого гена. И все живые организмы вовсю пользуются этим адаптационным механизмом для придания белкам необходимых функциональных и регуляторных свойств. Например, выяснилось, что у человека 94% генов подвергаются альтернативному Так, альтернативный сплайсинг гена человека CD44 может породить более тысячи разных вариантов белка.
Трасляция как стадия синтеза белка. Инициация, элонгация, терминация. Трансляция (синтез белка) Краткий обзор: Трансляция (англ. translation – перевод) – это биосинтез белка на матрице мРНК. Процесс трансляции разделяют на · инициацию — узнавание рибосомой стартового кодона и начало синтеза. · элонгацию — собственно синтез белка. · терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.
Полный ответ: Трансляция (англ. translation – перевод) – это биосинтез белка на матрице мРНК. После переноса информации с ДНК на матричную РНК начинается синтез белков. Каждая зрелая мРНК несет информацию только об одной полипептидной цепи. Если клетке необходимы другие белки, то необходимо транскрибировать мРНК с иных участков ДНК. Биосинтез белков или трансляция происходит на рибосомах, внутриклеточных белоксинтезирующих органеллах, и включает 5 ключевых элементов: · матрица – матричная РНК, · растущая цепь – полипептид, · субстрат для синтеза – 20 протеиногенных аминокислот, · источник энергии – ГТФ, · рибосомальные белки, рРНК и белковые факторы. Выделяют три основных стадии трансляции: инициация, элонгация, терминация. Инициация Для инициации необходимы мРНК, ГТФ, малая и большая субъединицы рибосомы, три белковых фактора инициации (ИФ-1, ИФ-2, ИФ-3), метионин и тРНК для метионина. В начале этой стадии формируются два тройных комплекса: · первый комплекс – мРНК + малая субъединица + ИФ-3, · второй комплекс – метионил-тРНК + ИФ-2 + ГТФ. После формирования тройные комплексы объединяются с большой субъединицей рибосомы. В этом процессе активно участвуют белковые факторы инициации, источником энергии служит ГТФ. После сборки комплекса инициирующая метионил-тРНК связывается с первым кодоном АУГ матричной РНК и располагается в П-центре (пептидильный центр) большой субъединицы. А-центр (аминоацильный центр) остается свободным, он будет задействован на стадии элонгации для связывания аминоацил-тРНК. События стадии инициации После присоединения большой субъединицы начинается стадия элонгации. Элонгация Для этой стадии необходимы все 20 аминокислот, тРНК для всех аминокислот, белковые факторы элонгации, ГТФ. Удлинение цепи происходит со скоростью примерно 20 аминокислот в секунду. Элонгация представляет собой циклический процесс. Первый цикл (и следующие циклы) элонгации включает три шага: 1. Присоединение аминоацил-тРНК (еще второй) к кодону мРНК (еще второму), аминокислота при этом встраивается в А-центр рибосомы. Источником энергии служит ГТФ. 2. Фермент пептидилтрансфераза осуществляет перенос метионина с метионил-тРНК (в П-центре) на вторую аминоацил-тРНК (в А-центре) с образованием пептидной связи между метионином и второй аминокислотой. При этом уже активированная СООН-группа метионина связывается со свободной NH2-группой второй аминокислоты. Здесь источником энергии служит макроэргическая связь между аминокислотой и тРНК. 3. Фермент транслоказа перемещает мРНК относительно рибосомы таким образом, что первый кодон АУГ оказывается вне рибосомы, второй кодон (на рисунке ) становится напротив П-центра, напротив А-центра оказывается третий кодон (на рисунке ). Для этих процессов необходима затрата энергии ГТФ. Так как вместе с мРНК перемещаются закрепленные на ней тРНК, то инициирующая первая тРНК выходит из рибосомы, вторая тРНК с дипептидом помещается в П-центр. Популярное:
|
Последнее изменение этой страницы: 2016-07-13; Просмотров: 4589; Нарушение авторского права страницы