Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Строение органов дыхания у позвоночных животных и человека. Значение дыхания для жизни организмов. Газообмен в легких и тканях.



Билет № 1

1. Уровни организации живой природы. Свойства живых организмов.

1. Сложная структура живой природы, выделение молекулярного, клеточного, организменного, популяционно-видового, биоценотического и биосферного уровней. Соподчинение и связь разных уровней организации структур живой природы, изучение их разными областями биологической науки: молекулярной биологией, цитологией, ботаникой, зоологией, анатомией и физиологией человека, экологией и др.
2. Молекулярный, наиболее древний уровень структуры живой природы, граничащий с неживой природой. Изучение химического состава и строения молекул сложных органических веществ, входящих в состав клетки (белков, нуклеиновых кислот и др.). Выявление роли нуклеиновых кислот в хранении наследственной информации, белков — в образовании клеточных структур, в процессах жизнедеятельности клетки.
3. Клеточный уровень жизни, включающий в себя молекулярный. Сложное строение клетки, наличие в ней оболочки, плазматической мембраны, ядра, цитоплазмы и других органоидов; присущие ей разнообразные процессы жизнедеятельности: рост, развитие, деление, обмен веществ. Сходное строение и жизнедеятельность клеток организмов растений, животных, грибов и бактерий.
4. Организменный уровень, включающий в себя молекулярный и клеточный. Сходство организмов разных царств живой природы — их клеточное строение, сходное строение клеток и протекающих в них процессов жизнедеятельности. Различия между растениями и животными в строении и способах питания. Связь организмов со средой обитания, их приспособленность к ней.
5. Популяционно-видовой — надорганизменный уровень жизни, включающий в себя организменный уровень. Пищевые, территориальные и родственные связи между особями вида, связь их с факторами неживой природы. Приуроченность экологических закономерностей и эволюционных процессов к этому уровню.
6. Биоценотический уровень жизни, представляющий собой сообщество особей разных видов на определенной территории, связанных различными внутривидовыми и межвидовыми взаимоотношениями, а также факторами неживой природы. Проявление на этом уровне экологических закономерностей и эволюционных процессов.
7. Биосферный — высший уровень организации жизни. Биосфера — биологическая оболочка Земли, совокупность всего живого населения. Круговорот веществ и превращение энергии в биосфере — основа ее целостности, роль живых организмов в нем. Роль солнечной энергии в круговов хранении наследственной информации, белков — в образовании клеточных структур, в процессах жизнедеятельности клетки.

2.Органы кровообращения человека и млекопитающих животных, их роль в жизнед еятельности организма. Кровь, ее строение и функции.

Кровообращение-важный фактор в жизнедеятельности организма человека и ряда животных. Кровь может выполнять свои разнообразные функции только находясь в постоянном движении. органы кровообращения человека и млекопитающих животных - это сердце и замкнутая система кровеносных сосудов, ключающая артерии, вены и капиляры.кровь состоит из плазмы и форменных элементов: клеток лейкоцитов и постклеточных структур(эритроцитов и тромбоцитов). функции: 1. дыхательная(транспортирует кислород к тканям от легких и углекислый газ от тканей к легким) 2. тропическая( переносит питательные вещества от стенки пищеворительного тракта к тканям). 3. обменная ( участвует в вводно -солевом обмене) 4. регуляторная( переносит гормоны и другие биологически активные в-ва, обеспечивая гуморальную регуляцию) 5. защитная ( в крови имеются антитела; лейкоциты выполняют функцию фагоцитоза генетических чужеродных частиц; кровь способна свертываться, предотвращая кровопотерю.)

3.С помощью гербарных образцов определите насекомоопыляемые и ветроопыляемые растения.

Насекомоопыляемых растений разнообразно ( вишня, слива, яблоня, сирень, розы и многие другие ). Они имеют ярко окрашенный или белый околоцветник и сильный запах (иногда и не очень приятный для нас ). Цветки крупные или собраны и соцветия. Запах цветков и их яркая окраска привлекают насекомых. Пчелы, шмели, мухи, бабочки, жуки и муравьи питаются пыльцой и нектаром цветка. Нектарники, расположенные в глубине цветка, выделяют нектар до тех пор, пока цветок не завянет.Тело насекомого, пытающегося добраться до нектарников, обильно покрывается пыльцой. Перелетая с одного цветка на другой в поисках пищи, они переносят прилипшую к их телу пыльцу с тычинок одних цветков на рыльца пестиков других.

Ветроопыляемых растений бывает очень много пыльцы. Она легкая, сухая и мелкая. Околоцветник отсутствует или плохо развит и не препятствует движению ветра.Тычиночные нити длинные и свисающие.Раскачиваясь на ветру, они распыляют зрелую пыльцу.

 

Билет № 2

 

1. Формы размножения организмов. Характеристика полового и бесполого размножения.

Размножение — присущее всем живым организмам свойство воспроизведения себе подобных, обеспечивающее непрерывность и преемственность жизни.
Для организмов, обладающих клеточным строением, в основе всех форм размножения лежит деление клетки.
Разные способы размножения подразделяются на три основных типа: бесполое, вегетативное и половое
.

Бесполое размножение — форма размножения, не связанная с обменом генетической информацией между особями — половым процессом. Бесполое размножение является древнейшим и самым простым способом размножения и широко распространено у одноклеточных организмов (бактерии, сине-зелёные водоросли, хлореллы, амёбы, инфузории). Этот способ имеет свои преимущества: в нём отсутствует необходимость поиска партнёра, а полезные наследственные изменения сохраняются практически навсегда. Наиболее распространённый способ размножения одноклеточных организмов — деление на две части, с образованием двух отдельных особей.
Среди многоклеточных организмов способностью к бесполому размножению обладают практически все растения и грибы — исключением является, например, вельвичия. Бесполое размножение этих организмов происходит вегетативным способом или спорами. Единственный способ бесполого размножения у животных — вегетативный.
Широко распространено ошибочное мнение, что особи, образовавшиеся в результате бесполого размножения, всегда генетически идентичны родительскому организму (если не брать в расчёт мутации). Наиболее яркий контрпример — размножение спорами у растений, так как при спорообразовании происходит редукционное деление клеток, в результате чего в спорах содержится лишь половина генетической информации, имеющейся в клетках спорофита.

Половое размножение сопряжено с половым процессом (слиянием клеток), а также, в каноническом случае, с фактом существования двух взаимодополняющих половых категорий (организмов мужского пола и организмов женского пола).
При половом размножении происходит образование гамет, или половых клеток. Эти клетки обладают гаплоидным (одинарным) набором хромосом. Животным свойствен двойной набор хромосом в обычных (соматических) клетках, поэтому гаметообразование у животных происходит в процессе мейоза. У многих водорослей и всех высших растений гаметы развиваются в гаметофите, уже обладающим одинарным набором хромосом, и получаются простым митотическим делением.

 

1. Организмы-паразиты. Особенности организации и образа жизни паразитических червей. Профилактика глистных заболеваний человека.

Многообразие паразитов, особенности их питания. Влияние на организм хозяина. Паразиты — организмы, использующие другие организмы в качестве места обитания и источника пищи, питаются органическими веществами организма-хозяина или его пищей либо заглатывая и переваривая твердые частицы пищи (аскарида), либо всасывая жидкие органические вещества всей поверхностью тела (бычий цепень) или с помощью специальных органов (клещи, клопы). Примеры паразитов: вирусы, многие бактерии, грибы, простейшие (малярийный паразит, лямблии), плоские и круглые черви (аскарида, острица, печеночный сосальщик, бычий и свиной цепни, клещи (чесоточный, таежный), насекомые (клопы, блохи, вши). Явление паразитизма среди растений (петров крест, заразиха), позвоночных животных (гнездовой паразитизм у кукушки).
Отрицательное влияние на организм хозяина большинства паразитов (вызывают разнообразные заболевания, разрушают клетки или ткани у хозяина, выделяют в организм хозяина ядовитые вещества).
2. Упрощение организации паразитов, обусловленное обилием пищи, отсутствием в организме хозяина врагов, резких колебаний температуры, влажности. Упрощение организации паразитов в процессе эволюции по сравнению со свободноживущими предками. Исчезновение у многих паразитов органов передвижения, органов чувств, более простое строение нервной системы. В связи с питанием переваренной или полупереваренной пищей упрощение строения пищеварительной системы или вообще ее отсутствие у некоторых видов; всасывание пищи, переваренной хозяином, через поверхность тела.
3. Приспособленность паразитов к жизни в организме хозяина. Формирование у паразитов в процессе эволюции приспособлений, защищающих их от неблагоприятных воздействий среды, например особой оболочки, покрывающей тело червей-паразитов и защищающей их от переваривания пищеварительными соками хозяина, приспособлений, позволяющих червям-паразитам удерживаться в пищеварительном канале, несмотря на сокращение его стенок, движение пищи и пищеварительных соков: удлиненная форма тела, наличие крючков и присосок. Преимущество в выживании и оставлении потомства в процессе эволюции тех особей, у которых такие черты приспособленности были наиболее развиты. Высокая плодовитость паразитов — важная черта приспособленности. Эволюция паразитов в направлении увеличения численности потомства: у ряда паразитов число яиц достигает нескольких сотен тысяч и даже миллионов. Причина большой плодовитости —- гибель многих яиц на ранних стадиях развития от воздействия абиотических и биотических факторов. У паразитов многих видов размножение происходит в организме не только основного, но и промежуточного хозяина. Значительное развитие органов размножения, гермафродитизм.
Упрощение организации паразитов, наличие черт приспособленности к жизни за счет организма хозяина, высокая плодовитость и другие признаки приспособленности к паразитическому образу жизни у червей обеспечивают их выживание.
4. Профилактика глистных заболеваний на основе знаний циклов развития червей-паразитов. Чтобы не заразиться бычьим цепнем, необходимо уничтожать зараженное мясо, хорошо проваривать или прожаривать говядину перед употреблением в пищу.

3Приготовить препарат клетки кожицы чешуи лука, зарисовать клетку и подписать ее части.

Билет № 3

Вид, критерии вида, видообразование. Вид – это совокупность особей сходных по строению и происхождению, обитающих на одной территории - ареале. Свободно скрещивающихся друг с другом, дающих плодовитое потомство. Критерии вида:

1) Морфологический – это описание внешних признаков особей (по окраске некоторых животных и насекомых можно судить о принадлежности особей к одному виду).

2) Биохимический - по хим. составу (по набору нуклеотидов молекул ДНК).

3) Географический - по месту жительства.

4) Экологический - определяют место в биоценозе по образу в жизни.

5) Физиологический - по степени полового размножения, но иногда между особями одного вида может возникнуть половая изоляция по географическим, и экологическим причинам.

6) Генетический - по набору генов.

Все эти критерии относительны. Чтобы узнать о принадлежности особей к одному виду, необходимо сочетание всех или нескольких критериев.

Видообразование.

Пока особи из разных популяций внутри вида хоть изредка могут скрещиваться в природе друг с другом и давать плодовитое потомство (т. е, пока существует поток генетической информации между разными популяциями внутри вида), вид остается единым как сложная интегрированная система. Однако в результате возникновения сильного давления изоляции этот поток генетической информации может прерваться. Возникновение такой изоляции между разными частями видового населения означает разделение одного вида на два - процесс видообразования. Итак, видообразование - это разделение (во времени и пространстве) прежде единого вида на два или несколько. Другими словами, видообразование - это разделение генетически открытой системы (какими являются по отношению друг к другу популяции и их группы внутри вида), на генетически закрытые (или обязательно устойчивые) системы. Видообразование происходит в результате постоянно совершающихся внутри вида процессов микроэволюции.

Все хорошо изученные микроэволюционные процессы протекают в совокупностях скрещивающихся и генетически перемешивающихся особей. Только в такой системе возможно образование бесчисленного множества различных генетических комбинаций, являющихся основой для эффективного действия естественного отбора. Однако скрещивания и происходящая вследствие этого нивелировка затрудняют эволюционную дифференцировку более или менее крупных совокупностей особей (популяций и их групп) в пределах одного вида. Образование нового вида создает обычно непреодолимые в природных условиях изоляционные барьеры, которые позволяют сохранять специфические адаптации каждого вида и в конечном итоге определяют возможность сохранения и увеличения многообразия проявления живого на нашей планете.

 

Билет 5

Химический состав клетки. Органические вещества, их строение и функции.

Элементы по содержанию в клетке делятся на 2 группы:

 

-------------------Функции основных органических веществ клетки---------------------------

Органические вещества функции

БЕЛКИ ------------------------------------- ---- Строительная, ферментативная,

двигательная, защитная,

транспортная, энергетическая.

ЖИРЫ-------------------------------------------- Строительная, защитная,

энергетическая,

терморегуляторная.

УГЛЕВОДЫ-------------------------------------- Строительная, энергетическая,

защитная.

НУКЛЕИНОВЫЕ ------------------------------- хранение и передача наследственной

КИСЛОТЫ ДНК и РНК информации участие в биосинтезе

белков.

АТФ---------------------------------------------- обеспечивает запас энергии.

1. Элементарный состав клетки. Сходство химического состава клеток разных организмов как доказательство их родства. Основные химические элементы, входящие в состав клетки: кислород, углерод, водород, азот, калий, сера, фосфор, хлор, магний, натрий, кальций, железо.

2. Роль различных химических элементов в клетке. Кислород, углерод, водород и азот — основные химические элементы, из которых состоят молекулы органических веществ. Такие элементы, как калий, натрий и хлор, — входят в состав плазмы крови, участвуют в обмене веществ и обеспечивают постоянство внутренней среды организма — гомеостаз.
Сера — элемент, входящий в состав некоторых белков, фосфор входит в состав всех нуклеиновых кислот, магний — хлорофилла, железо — гемоглобина (гемоглобин — белок, входящий в состав эритроцитов и обеспечивающий перенос кислорода и углекислого газа в организме), кальций — костей, раковин моллюсков.
3. Химические вещества, входящие в состав клетки: неорганические (вода, минеральные соли) и органические (углеводы, жиры, белки, нуклеиновые кислоты, АТФ).

4. Минеральные соли, их роль в клетке. Содержание минеральных солей в клетке в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов (—НРО|~, — Н2РС> 4, —СГ, —НСС*з). Уравновешенность содержания катионов и анионов в клетке, обеспечивающая постоянство внутренней среды организма. Примеры: в клетке среда слабощелочная, внутри клетки высокая концентрация ионов К+, а в окружающей клетку среде — ионов Na+. Участие минеральных солей в обмене веществ.
5. Вода. Содержание воды в клетке — от 40 до 98% ее массы. Роль воды в клетке:
— обеспечение упругости клетки. Последствия потери клеткой воды — увядание листьев, высыхание плодов;
— ускорение химических реакций за счет растворения веществ в воде;

— обеспечение перемещения веществ: поступление большинства веществ в клетку и удаление их из клетки в виде растворов;

— обеспечение растворения многих химических веществ (ряда солей, Сахаров);

— участие в ряде химических реакций;

— участие в процессе теплорегуляции благодаря способности к медленному нагреванию и медленному остыванию.

 


2.Состав, строение и рост костей. Виды соединения костей.

 

Состав и свойства костей. Основные свойства ткани скелета — твердость и эластичность. Твердость кости зависит от минеральных веществ — солей кальция (2/3), а эластичность — от органических веществ — оссеина и оссеомукоида (1/з).

Строение костей. С наружной поверхности кость покрыта соединительнотканой оболочкой — надкостницей, более толстой у детей, чем у взрослых. Ею не покрыты только суставные концы костей. Надкостница богата кровеносными сосудами и нервами.

К надкостнице прикрепляются мышцы и связки. Она смягчает толчки, но более чувствительна к боли, чем сама кость, в силу лучшей иннервации, а поэтому все заболевания, связанные с повреждением надкостницы.

Глубже надкостницы лежит плотное вещество кости. Под ним находится губчатое вещество, а еще глубже у длинных костей имеется полость. Такие кости называют трубчатыми.

Плотный слой кости имеет пластинчатое строение, напоминающее систему вставленных друг в друга цилиндров. Такое строение обусловливает крепость и легкость костей. В средней части плотного слоя имеется масса каналов продольного направления.

В них располагаются кровеносные сосуды, питающие кость. У детей количество таких каналов больше, чем у взрослых, и они больше в диаметре.

Губчатое вещество костей, заполненное красным костным мозгом, состоит из множества костных перекладин, располагающихся по направлению тяги прикрепляющих мышц. Костная ткань детей содержит меньше плотных веществ, а больше воды, что при прочности надкостницы придает костям мягкость и эластичность.

У новорожденных костномозговой канал заполнен красным костным мозгом, который в процессе роста замещается желтым костным мозгом, состоящим в основном из жировой ткани. С 15 лет красный костный мозг остается только в эпифизах и некоторых плоских костях (грудинная, тела позвонков, крылья подвздошных костей).

Перестройка костей у детей происходит очень быстро и энергично. К 12 годам кость в основном похожа на кость взрослого, но она еще растет и совершенствуется. При этом элементами роста являются участки хрящевой ткани в концевых отделах костей, называемые зонами роста. Они обеспечивают удлинение костей.

За период роста в костях ребенка количество воды уменьшается, а количество минеральных веществ увеличивается. При этом несколько уменьшается количество органических веществ.

Типы мышечной ткани: поперечнополосатые и гладкие

Поперечнополосатые - это широкие (мышцы спини, груди, живота); длинные конечностей); короткие (около позвоночника) и другие скелетные мышцы.

Их деятельность подчинена воле и сознанию человека. Поэтому их еще называют произвольными.

Гладкие мышцы находятся но внутренних органахэ Они сокращаются медленно, без участия воли и сознания человека поэтому называютсянепрофильными

Химическое строение мышц. Они состоят из белков, жиров и некоторого количества неорганических веществ — солей. В них содержится глюкоза, гликоген, вода – 70-80%.

Соединения костей

Синдесмология — учение о соединениях костей.

3 По коллекциям насекомых определить приспособленность к среде обитания.

Насекомые, черты приспособленности к среде обитания насекомых. Все представители этого класса. Всем известно поразительное сходство палочников с сухими веточками (коммуфляж) Впрочем, тела многих гусениц очень напоминают веточки, а крылья бабочек могут сойти за листья деревьев той местности, где они обитают. Здесь нужно отметить, что в этом случае наблюдается гармоничное сочетание покровительственной формы тела и покровительственной же окраски. Некоторых бабочек, когда те сливаются с окружающей их местностью, сложно отличить от листьев даже в упор. Примеры приспособленности организмов не ограничиваются банальной маскировкой, приспособительной окраске, когда ярко окрашенные, «цветастые» насекомые как раз-таки не пользуются популярностью у хищников, так как те прекрасно знают об их резко отрицательных пищевых качествах. Так, синица или воробей, пару раз попытавшись в молодости закусить клопом-солдатиком, до конца жизни запоминают их едкий, ядовитый вкус. Кроме того, черты приспособленности организмов к среде включают в себя и мимикрию. Явление это напоминает покровительственную окраску, но «наоборот». Так, некоторые беззащитные и съедобные виды отлично могут подражать тем насекомым, которые ядовиты или имеют отвратительный вкус. К примеру, осовидные мухи сильно похожи на ос, которых боятся даже многие птицы. Все этого говорит о том, что приспособленность организмов к условиям среды носит как раз-таки приспособительный, адаптационный характер.

 

БИЛЕТ 6

1. Обмен веществ и энергии в клетке, своеобразие обмена веществ в растительной клетке.

Обмен веществ и энергии — совокупность процессов превращения веществ и энергии, происходящих в живых организмах, и обмен веществами и энергией между организмом и окружающей средой. Обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи, отличающих живое от не живого. В процессе обмена поступившие в организм вещества превращаются в собственные вещества тканей и в конечные продукты, выводящиеся из организма. При этих превращениях освобождается и поглощается энергия.
По форме получаемого углерода клетки делят на аутотрофные — «сами себя питающие», использующие в качестве единственного источника углерода диоксид углерода (двуокись углерода, углекислый газ) СО2, из которого они способны строить все нужные им углеродсодержащие соединения, и на гетеротрофные — «питающиеся за счет других», не способные усваивать СО2 и получающие углерод в форме сравнительно сложных органических соединений, таких, например, как глюкоза. Подавляющее большинство аутотрофных организмов является фототрофами. Это — зеленые клетки высших растений, сине-зеленые водоросли, фотосинтезирующие бактерии.
В настоящее время известно, что фотосинтез проходит две стадии, но только одна из них — на свету. Доказательства двухстадийности процесса впервые были получены в 1905 году английским физиологом растений Ф. Ф. Блэклином, который исследовал влияние освещенности и температуры на объем фотосинтеза. Фотосинтез в растениях осуществляется в хлоропластах. Он включает преобразования энергии (световой процесс), превращение вещества (темновой процесс). Световой процесс происходит в гилакоидах, темновой — в строме хлоропластов. Обобщенное циркулирование фотосинтеза выглядит следующим образом:
свет
6СO2 + 12H2О-------------------C6H12O6 + 6H2О + 6O2
Два процесса фотосинтеза выражаются отдельными уравнениями
свет
12H2О-------------------12H2 + 6O2 + энергия АТФ
(световой процесс)
свет
12H2 + 6O2 + энергия АТФ-------------------С6H12O6 + H2О
(темновой процесс)
Фотосинтез — единственный процесс в биосфере, ведущий к увеличению ее свободной энергии за счет внешнего источника. Запасенная в продуктах фотосинтеза энергия — основной источник энергии для человечества.
Ежегодно в результате фотосинтеза на Земле образуется 150 млрд. тонн органического вещества и выделяется около 200 млн. тонн свободного кислорода.
Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез, поддерживает современный состав атмосферы, необходимый для жизни на Земле. Фотосинтез препятствует увеличению концентрации СO2, предотвращая перегрев Земли вследствие так называемого «парникового эффекта». Поскольку зеленые растения представляют собой непосредственную или опосредованную базу питания всех других гетеротрофных организмов, фотосинтез удовлетворяет потребность в пище всего живого на нашей планете. Он — важнейшая основа сельского и лесного хозяйства. Квадратный метр поверхности листьев в течение одного часа продуцирует около одного грамма сахара; это значит, что все растения, по приблизительной оценке, изымают из атмосферы от 100 до 200 млрд. тонн С в год. Около 60 % этого количества поглощают леса, занимающие 30 % непокрытой льдами поверхности суши, 32 % — окультуренные земли, а оставшиеся 8 % — растения степей и пустынных мест, а также городов и поселков.

БИЛЕТ 7

· Обмен веществ и энергии в клетке. Энергетический обмен

Основой жизнедеятельности клетки и организма являются обмен веществ и превращение энергии. Обмен ее ществ и превращение энергии — совокупность всех реакций распада и синтеза, протекающих в клетке или во всем организме, связанных с выделением или поглощением энергии. Обмен веществ и превращение энергии состоит из двух взаимосвязанных, но противоположных процессов — ассимиляции и диссимиляции (рис. 53).

Рис. 53. Схема взаимосвязей обмена веществ и превращения энергии в клетке

Диссимиляционные процессы — это дыхание, брожение, гликолиз. Основные конечные продукты при этом — вода, углекислый газ, аммиак, мочевина и молочная кислота.

Ассимиляция (от лат. ассимиляций — усвоение) — это совокупность реакций синтеза высокомолекулярных органических веществ из низкомолекулярных органических или неорганических. В процессе ассимиляции происходит поглощение энергии, которая образуется в результате распада АТФ. Так, органические вещества, например углеводы, синтезируются в растительных клетках из углекислого газа, воды и минеральных солей.

Итак, основное вещество, которое обеспечивает все обменные процессы в клетке — это АТФ. В процессе диссимиляции происходят синтез молекул АТФ и запасание в них энергии.

Типы обмена веществ. Единственный источник энергии на Земле — это Солнце. Благодаря солнечной энергии происходит первичный синтез органических веществ из неорганических — фотосинтез. Энергия Солнца аккумулируется в синтезированных органических веществах, превращаясь в энергию химических связей. В процессе питания организмы расщепляют органические вещества, а выделяющаяся при этом энергия запасается в молекулах АТФ. В дальнейшем она используется в реакциях ассимиляции.

По способу получения энергии и синтеза органических веществ все организмы делят на автотрофные и гетеротрофные (рис. 54). Автотрофные организмы, или автотрофы (от греч. аутос — сам и трофо — пища, питание) синтезируют органические вещества из неорганических. К автотрофам относят все зеленые растения и цианобактерии. Автотрофно питаются и хемосинтезирующие бактерии, использующие энергию, которая выделяется при окислении неорганических веществ, например серы, железа, азота.

 

Процессы диссимиляции у организмов также различаются. Аэробным организмам, или аэробам (от греч. аэр — воздух и биос — жизнь) для жизнедеятельности необходим кислород. Дыхание для них является главной формой диссимиляции. Богатые энергией органические вещества в присутствии кислорода полностью окисляются до энергетически бедных неорганических веществ — углекислого газа и воды.

Анаэробным организмам, или анаэробам (от греч. а, ан — отрицательная частица) кислород не нужен: процессы их жизнедеятельности могут протекать в бескислородной среде. Органические вещества в этом случае расщепляются не полностью. Поэтому продукты их жизнедеятельности могут использовать другие организмы. Например, все молочнокислые продукты являются результатом жизнедеятельности анаэробных молочнокислых бактерий.

Большинство организмов на нашей планете — аэробы: все растения, животные (за исключением некоторых паразитов), основные группы грибов и бактерий. Число анаэробов значительно меньше: это многие почвенные микроорганизмы (бактерии и грибы), внутренние паразиты, утратившие способность использовать кислород в связи с образом жизни.

Клеточное дыхание – это биохимический процесс в клетке, протекающий с участием ферментов, в результате которого выделяется вода и углекислый газ, энергия запасается в виде макроэргических связей молекул АТФ. Если этот процесс протекает в присутствии кислорода, то он носит название аэробный, если же он происходит без кислорода то он называется анаэробным.

Билет 8

1. Природное сообщество, основные звенья цепи питания.

Экосистема (природное сообщество). Совместное обитание в природе организмов всех царств. Экосистема — совокупность организмов разных видов, обитающих длительное время на определенной территории, приспособленных к совместной жизни и к факторам неживой природы.

2. Виды экосистем: естественные, или природные (лес, луг, болото, водоем и др.), и искусственные (поле, сад и др.)
3. Основные пищевые (трофические) группы организмов — компоненты экосистем. Группа организмов, которые производят на свету из неорганических веществ органические (автотрофы — зеленые растения), — организмы-производители; группа организмов, которые потребляют готовые органические вещества (гетеротрофы — в основном животные, грибы), — организмы-потребители; группа организмов, которые разрушают органические вещества и перерабатывают их в неорганические (гетеротрофы — бактерии, грибы, некоторые животные), — организмы-разрушители. В пищевых (трофических) взаимосвязях эти группы организмов выполняют роль звеньев пищевой цепи. 4. Пищевые связи в экосистеме. Тесная взаимосвязь всех звеньев (пищевых групп) в сообществе — условие его существования. Пищевые связи между организмами в экосистеме, при которых организмы одних видов служат пищей для других. Например, растения служат пищей для растительноядных животных, а они — для хищников. Формирование в каждой экосистеме на основе пищевых связей цепей питания, например: растения —»- полевка —*- лисица. Здесь указаны составляющие цепь питания организмы и стрелками обозначен переход вещества и энергии в этой цепи. Начальное звено цепи питания, как правило, растения (автотрофы, создающие органические вещества в процессе фотосинтеза). Использование запасенной растениями в органических веществах солнечной энергии гетеротрофами — всеми остальными звеньями цепи питания.

· Строение органов выделения у позвоночных животных и человека значение выделения для жизни организмов

Роль органов выделения состоит в удалении из организма продуктов обмена веществ и направлены на обеспечение постоянства внутренней среды организма.
У всех позвоночных выделительные органы представлены почками, предназначенными для выведения из тела излишков воды, минеральных солей и продуктов распада в виде мочевой кислоты. У большинства позвоночных есть мочевой пузырь.

У человека.

Углекислый газ удаляется через легкие. Избыток солей выводится с потом через кожу. основная часть вредных веществ удаляется из организма через органы мочевыделительной системы.

3 Определите фенотипы растений гороха (семена желтые - А, зеленые - а, гладкие - В, морщинистые - в). генотипы которых: AABв. AaBв. аавв. Aaвв. ааBB. Каковы возможные генотипы и фенотипы потомства при скрещивании растений гороха с генотипами АаВв * аавв? .А- желтые, а- зеленые

у гороха желтая окраска семян доминирует над зеленой гладкая форма семян над морщинистойHYPERLINK " https: //otvet.mail.ru/question/68332555".HYPERLINK " https: //otvet.mail.ru/question/68332555" HYPERLINK " https: //otvet.mail.ru/question/68332555" сHYPERLINK " https: //otvet.mail.ru/question/68332555" крещено дигетерозиготное HYPERLINK " https: //otvet.mail.ru/question/68332555" раст

ААВв - желтые гладкие, АаВв-желтые гладкие, аавв-зеленые морщинистые, Аавв-желтые морщинистые, ааВВ-зеленые гладкие
При скрещивании АаВв*аавв
Возможны: 2 АаВв - желтый гладкий, 2 ааВв - зеленый гладкий, 2 аавв - зеленый морщинистый, 2 Аавв - желтый морщинистый

AABв - желтый, гладкие.
AaBв - желтые, гладкие.
аавв - зелёные, морщинистые.
Aaвв - желтые, морщинистые.
ааBB - зелёные, гладкие

АаВв-желтые гладкие,

аавв-зеленые морщинистые,

Аавв-желтые морщинистые,

ааВВ-зеленые гладкие
При скрещивании АаВв*аавв
Возможны:

2 АаВв - желтый гладкий,

2 ааВв - зеленый гладкий,

2 аавв - зеленый морщинистый,

2 Аавв - желтый морщинисты

 

Билет9

Билет 10

Билет 11

Билет № 13

 

1. Нуклеиновые кислоты, их виды, строение, значение в процессе биосинтеза белка.

Нуклеиновые кислоты бывают двух типов - ДНК и РНК. ДНК находится в ядре, входит в состав хромосом, определяет состав белков клетки и передачу наследственных признаков и свойств от родителей к потомству. Функции РНК связаны с образованием характерных для этой клетки белков.

Основное жизненное свойство клетки - обмен веществ. Из межклеточного вещества в клетки постоянно поступают питательные вещества и кислород и выделяются продукты распада.

Вещества, поступившие в клетку, участвуют в процессах биосинтеза.

Биосинтез - это образование белков, жиров, углеводов и их соединений из более простых веществ. Одновременно с биосинтезом в клетках происходит распад органических соединений. Большинство реакций распада идет с участием кислорода и

освобождением энергии. В результате обмена веществ состав клеток постоянно обновляется: одни вещества образуются, а другие разрушаются.

Свойство живых клеток, тканей, целого организма реагировать на внешние или внутренние воздействия раздражители называется раздражимостью. В ответ на химические и физические раздражения в клетках возникают специфические изменения их жизнедеятельности.

Клеткам свойственны рост и размножение. Каждая из образовавшихся дочерних клеток растет и достигает размеров материнской. Новые клетки выполняют функцию материнской клетки. Продолжительность жизни клеток различна: от нескольких часов до десятков лет.

Таким образом, живая клетка обладает рядом жизненных свойств: обменом веществ, раздражимостью, ростом и размножением, подвижностью, на основе которых осуществляются функции целого организма.

 

 

1. Строение и работа сердца. Регуляция работы сердца.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-13; Просмотров: 5497; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.081 с.)
Главная | Случайная страница | Обратная связь