Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Деление клетки. Биологическое значение митоза и мейоза.



Деление клеток — процесс их размножения, в результате которого из одной материнской образуются две сходные с ней дочерние клетки. Рост органов и организмов растений, животных, человека, грибов за счет деления и увеличения числа клеток. Хранение наследственной информации о признаках организма в хромосомах, расположенных в ядре. Формирование в процессе эволюции сложного механизма деления клетки, точного распределения хромосом между дочерними клетками: удвоение числа хромосом перед делением клетки; их расположение в процессе деления материнской клетки в ее центре; возникновение гомологичных хроматид в результате удвоения; расхождение их к противоположным полюсам клетки. Следующий этап: формирование вокруг хромосом ядерной оболочки, двух ядер; равномерное распределение цитоплазмы и органоидов между новыми клетками. Формирование перегородки в центре клетки, возникновение двух дочерних клеток из одной материнской с таким же набором хромосом, как и в материнской клетке.
Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.
МИТОЗ - основной способ деления клеток эукариот (непрямое деление). У всех живых организмов увеличение числа клеток происходит только в результате деления уже существующих клеток. Происходит это только после удвоения всего генетического материала клетки в синтетическом периоде интерфазы. Деление всех эукариотических клеток сопровождается конденсацией, т. е. резким уплотнением хроматина хромосом. При этом происходят два события: расхождение предварительно удвоенных хромосом и разделение тела клетки надвое, цитотомия.

Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Мейоз лежит в основе образования половых клеток (гамет) уживотных и спор у растений. Обеспечивает возможность полового размножения и комбинативную изменчивость потомства

МЕЙОЗ - способ деления клетки, в результате которого происходит уменьшение (редукция) числа хромосом в дочерних клетках; основное звено образования половых клеток. В ходе мейоза одна диплоидная клетка (содержит 2 набора хромосом) после двух последовательных делений дает начало 4 гаплоидным (содержат по одному набору хромосом) половым клеткам. При слиянии мужских и женских половых клеток диплоидный набор хромосом восстанавливается

2.Многообразие одноклеточных животных, особенности строения, жизнедеятельности, роль в природе и жизни человека.

Многообразие животных, их строение, особенности жизнедеятельности и поведения, размножение, развитие, их происхождение и эволюцию, распространение, значение в природе и жизни человека изучает зоология — наука о животных. У животных много общих черт с представителями других царств.

Общая характеристика одноклеточных К одноклеточным принадлежат свыше 30 тыс. видов, обитающих на дне и в толще воды морских и пресных водоемов, влажной почве. Более 3, 5 тыс. видов являются паразитами человека и животных. Размеры тела простейших в основном микроскопические, но встречаются и более крупные, достигающие нескольких миллиметров и даже сантиметров. Общими чертами организации простейших являются следующие: Большинство простейших—одноклеточные, реже колониальные организмы. Их одноклеточное тело обладает функциями целостного организма, которые выполняются органеллами общего назначения (ядро, эндоплазматическая сеть, комплекс Гольджи, лизосомы, митохондрии, рибосомы и др.) и специального (пищеварительные и сократительные вакуоли, жгутики, реснички и др.).

С помощью гербарных образцов определите растения, принадлежащие к классу однодольные, назовите признаки, по которым вы его определили.

 

3. С помощью гербарных образцов определите растения, принадлежащие к классу однодольные, назовите признаки, по которым вы его определили.

Значительная часть зерновки занята эндоспермом. В его клетки накапливаются крахмал, белки, жиры.В нижней части зерновки располагается зародыш, отделенный от эндосперма семядолей (у злаков семядолю называют еще щитком ). Семядоля (она прощупывается в виде опоясывающего бугорка на поверхности целого зерна ) не имеет питательных веществ. Она защишает зародышевую почку. Через неее из эндосперма к зародышу поступает питательные вещества. Однодольные растения бывают с ярко окрашенными цветками (орхидеи, ирисы) или мелкими и невзрачными, часто без околоцветника (злаки, осоки)

Строение зародыша: зародыш с одной семядолей, ассиметричный, т. е. семядоля занимает верхушечное положение, а почечка находится сбоку.
Строение листа: листья частно не разделены на черешок и листовую пластинку, неопадающие, жилкование параллельное или дуговидное.
Особенности роста: камбий отсутствует. Вторичный рост не характер.
Жизненные формы: в основном - травы или иногда вторичные древесные формы (пальмы).
Корневая система: мочковатая (главный корень развит слабо или отсутствует)
Цветки: трехчленные или произвольные от них типы; реже двух-, но никогда не пятичленные
.

Билет 5

Химический состав клетки. Органические вещества, их строение и функции.

Элементы по содержанию в клетке делятся на 2 группы:

 

-------------------Функции основных органических веществ клетки---------------------------

Органические вещества функции

БЕЛКИ ------------------------------------- ---- Строительная, ферментативная,

двигательная, защитная,

транспортная, энергетическая.

ЖИРЫ-------------------------------------------- Строительная, защитная,

энергетическая,

терморегуляторная.

УГЛЕВОДЫ-------------------------------------- Строительная, энергетическая,

защитная.

НУКЛЕИНОВЫЕ ------------------------------- хранение и передача наследственной

КИСЛОТЫ ДНК и РНК информации участие в биосинтезе

белков.

АТФ---------------------------------------------- обеспечивает запас энергии.

1. Элементарный состав клетки. Сходство химического состава клеток разных организмов как доказательство их родства. Основные химические элементы, входящие в состав клетки: кислород, углерод, водород, азот, калий, сера, фосфор, хлор, магний, натрий, кальций, железо.

2. Роль различных химических элементов в клетке. Кислород, углерод, водород и азот — основные химические элементы, из которых состоят молекулы органических веществ. Такие элементы, как калий, натрий и хлор, — входят в состав плазмы крови, участвуют в обмене веществ и обеспечивают постоянство внутренней среды организма — гомеостаз.
Сера — элемент, входящий в состав некоторых белков, фосфор входит в состав всех нуклеиновых кислот, магний — хлорофилла, железо — гемоглобина (гемоглобин — белок, входящий в состав эритроцитов и обеспечивающий перенос кислорода и углекислого газа в организме), кальций — костей, раковин моллюсков.
3. Химические вещества, входящие в состав клетки: неорганические (вода, минеральные соли) и органические (углеводы, жиры, белки, нуклеиновые кислоты, АТФ).

4. Минеральные соли, их роль в клетке. Содержание минеральных солей в клетке в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов (—НРО|~, — Н2РС> 4, —СГ, —НСС*з). Уравновешенность содержания катионов и анионов в клетке, обеспечивающая постоянство внутренней среды организма. Примеры: в клетке среда слабощелочная, внутри клетки высокая концентрация ионов К+, а в окружающей клетку среде — ионов Na+. Участие минеральных солей в обмене веществ.
5. Вода. Содержание воды в клетке — от 40 до 98% ее массы. Роль воды в клетке:
— обеспечение упругости клетки. Последствия потери клеткой воды — увядание листьев, высыхание плодов;
— ускорение химических реакций за счет растворения веществ в воде;

— обеспечение перемещения веществ: поступление большинства веществ в клетку и удаление их из клетки в виде растворов;

— обеспечение растворения многих химических веществ (ряда солей, Сахаров);

— участие в ряде химических реакций;

— участие в процессе теплорегуляции благодаря способности к медленному нагреванию и медленному остыванию.

 


2.Состав, строение и рост костей. Виды соединения костей.

 

Состав и свойства костей. Основные свойства ткани скелета — твердость и эластичность. Твердость кости зависит от минеральных веществ — солей кальция (2/3), а эластичность — от органических веществ — оссеина и оссеомукоида (1/з).

Строение костей. С наружной поверхности кость покрыта соединительнотканой оболочкой — надкостницей, более толстой у детей, чем у взрослых. Ею не покрыты только суставные концы костей. Надкостница богата кровеносными сосудами и нервами.

К надкостнице прикрепляются мышцы и связки. Она смягчает толчки, но более чувствительна к боли, чем сама кость, в силу лучшей иннервации, а поэтому все заболевания, связанные с повреждением надкостницы.

Глубже надкостницы лежит плотное вещество кости. Под ним находится губчатое вещество, а еще глубже у длинных костей имеется полость. Такие кости называют трубчатыми.

Плотный слой кости имеет пластинчатое строение, напоминающее систему вставленных друг в друга цилиндров. Такое строение обусловливает крепость и легкость костей. В средней части плотного слоя имеется масса каналов продольного направления.

В них располагаются кровеносные сосуды, питающие кость. У детей количество таких каналов больше, чем у взрослых, и они больше в диаметре.

Губчатое вещество костей, заполненное красным костным мозгом, состоит из множества костных перекладин, располагающихся по направлению тяги прикрепляющих мышц. Костная ткань детей содержит меньше плотных веществ, а больше воды, что при прочности надкостницы придает костям мягкость и эластичность.

У новорожденных костномозговой канал заполнен красным костным мозгом, который в процессе роста замещается желтым костным мозгом, состоящим в основном из жировой ткани. С 15 лет красный костный мозг остается только в эпифизах и некоторых плоских костях (грудинная, тела позвонков, крылья подвздошных костей).

Перестройка костей у детей происходит очень быстро и энергично. К 12 годам кость в основном похожа на кость взрослого, но она еще растет и совершенствуется. При этом элементами роста являются участки хрящевой ткани в концевых отделах костей, называемые зонами роста. Они обеспечивают удлинение костей.

За период роста в костях ребенка количество воды уменьшается, а количество минеральных веществ увеличивается. При этом несколько уменьшается количество органических веществ.

Типы мышечной ткани: поперечнополосатые и гладкие

Поперечнополосатые - это широкие (мышцы спини, груди, живота); длинные конечностей); короткие (около позвоночника) и другие скелетные мышцы.

Их деятельность подчинена воле и сознанию человека. Поэтому их еще называют произвольными.

Гладкие мышцы находятся но внутренних органахэ Они сокращаются медленно, без участия воли и сознания человека поэтому называютсянепрофильными

Химическое строение мышц. Они состоят из белков, жиров и некоторого количества неорганических веществ — солей. В них содержится глюкоза, гликоген, вода – 70-80%.

Соединения костей

Синдесмология — учение о соединениях костей.

3 По коллекциям насекомых определить приспособленность к среде обитания.

Насекомые, черты приспособленности к среде обитания насекомых. Все представители этого класса. Всем известно поразительное сходство палочников с сухими веточками (коммуфляж) Впрочем, тела многих гусениц очень напоминают веточки, а крылья бабочек могут сойти за листья деревьев той местности, где они обитают. Здесь нужно отметить, что в этом случае наблюдается гармоничное сочетание покровительственной формы тела и покровительственной же окраски. Некоторых бабочек, когда те сливаются с окружающей их местностью, сложно отличить от листьев даже в упор. Примеры приспособленности организмов не ограничиваются банальной маскировкой, приспособительной окраске, когда ярко окрашенные, «цветастые» насекомые как раз-таки не пользуются популярностью у хищников, так как те прекрасно знают об их резко отрицательных пищевых качествах. Так, синица или воробей, пару раз попытавшись в молодости закусить клопом-солдатиком, до конца жизни запоминают их едкий, ядовитый вкус. Кроме того, черты приспособленности организмов к среде включают в себя и мимикрию. Явление это напоминает покровительственную окраску, но «наоборот». Так, некоторые беззащитные и съедобные виды отлично могут подражать тем насекомым, которые ядовиты или имеют отвратительный вкус. К примеру, осовидные мухи сильно похожи на ос, которых боятся даже многие птицы. Все этого говорит о том, что приспособленность организмов к условиям среды носит как раз-таки приспособительный, адаптационный характер.

 

БИЛЕТ 6

1. Обмен веществ и энергии в клетке, своеобразие обмена веществ в растительной клетке.

Обмен веществ и энергии — совокупность процессов превращения веществ и энергии, происходящих в живых организмах, и обмен веществами и энергией между организмом и окружающей средой. Обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи, отличающих живое от не живого. В процессе обмена поступившие в организм вещества превращаются в собственные вещества тканей и в конечные продукты, выводящиеся из организма. При этих превращениях освобождается и поглощается энергия.
По форме получаемого углерода клетки делят на аутотрофные — «сами себя питающие», использующие в качестве единственного источника углерода диоксид углерода (двуокись углерода, углекислый газ) СО2, из которого они способны строить все нужные им углеродсодержащие соединения, и на гетеротрофные — «питающиеся за счет других», не способные усваивать СО2 и получающие углерод в форме сравнительно сложных органических соединений, таких, например, как глюкоза. Подавляющее большинство аутотрофных организмов является фототрофами. Это — зеленые клетки высших растений, сине-зеленые водоросли, фотосинтезирующие бактерии.
В настоящее время известно, что фотосинтез проходит две стадии, но только одна из них — на свету. Доказательства двухстадийности процесса впервые были получены в 1905 году английским физиологом растений Ф. Ф. Блэклином, который исследовал влияние освещенности и температуры на объем фотосинтеза. Фотосинтез в растениях осуществляется в хлоропластах. Он включает преобразования энергии (световой процесс), превращение вещества (темновой процесс). Световой процесс происходит в гилакоидах, темновой — в строме хлоропластов. Обобщенное циркулирование фотосинтеза выглядит следующим образом:
свет
6СO2 + 12H2О-------------------C6H12O6 + 6H2О + 6O2
Два процесса фотосинтеза выражаются отдельными уравнениями
свет
12H2О-------------------12H2 + 6O2 + энергия АТФ
(световой процесс)
свет
12H2 + 6O2 + энергия АТФ-------------------С6H12O6 + H2О
(темновой процесс)
Фотосинтез — единственный процесс в биосфере, ведущий к увеличению ее свободной энергии за счет внешнего источника. Запасенная в продуктах фотосинтеза энергия — основной источник энергии для человечества.
Ежегодно в результате фотосинтеза на Земле образуется 150 млрд. тонн органического вещества и выделяется около 200 млн. тонн свободного кислорода.
Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез, поддерживает современный состав атмосферы, необходимый для жизни на Земле. Фотосинтез препятствует увеличению концентрации СO2, предотвращая перегрев Земли вследствие так называемого «парникового эффекта». Поскольку зеленые растения представляют собой непосредственную или опосредованную базу питания всех других гетеротрофных организмов, фотосинтез удовлетворяет потребность в пище всего живого на нашей планете. Он — важнейшая основа сельского и лесного хозяйства. Квадратный метр поверхности листьев в течение одного часа продуцирует около одного грамма сахара; это значит, что все растения, по приблизительной оценке, изымают из атмосферы от 100 до 200 млрд. тонн С в год. Около 60 % этого количества поглощают леса, занимающие 30 % непокрытой льдами поверхности суши, 32 % — окультуренные земли, а оставшиеся 8 % — растения степей и пустынных мест, а также городов и поселков.


Поделиться:



Популярное:

  1. G) определение путей эффективного вложения капитала, оценка степени рационального его использования
  2. I этап. Определение стратегических целей компании и выбор структуры управления
  3. I. ОПРЕДЕЛЕНИЕ И ПРОБЛЕМЫ МЕТОДА
  4. III. Определение посевных площадей и валовых сборов продукции
  5. VII. Определение затрат и исчисление себестоимости продукции растениеводства
  6. X. Определение суммы обеспечения при проведении исследования проб или образцов товаров, подробной технической документации или проведения экспертизы
  7. Агроэкологическая оценка земель конкретного хозяйства и распределение их по группам пригодности для возделывания сельскохозяйственных культур
  8. Административно-территориальное деление и система местного самоуправления США
  9. Анализ платежеспособности и финансовой устойчивости торговой организации, определение критериев неплатежеспособности
  10. Анализ показателей качества и определение полиграфического исполнения изделия
  11. Б.1. Определение психофизиологии.
  12. БАКТЕРИАЛЬНАЯ ЗАКВАСКА ДЛЯ КИСЛОСЛИВОЧНОГО МАСЛА И БИОЛОГИЧЕСКОЕ СКВАШИВАНИЕ СЛИВОК


Последнее изменение этой страницы: 2016-07-13; Просмотров: 5506; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.038 с.)
Главная | Случайная страница | Обратная связь