Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ДРУГИЕ МЕТАТЕЛЬНЫЕ ВЗРЫВЧАТЫЕ ВЕЩЕСТВА



 

Поначалу изобретатели решили, что ответ на вопрос заключается в использовании фульминатов. В 1786 году французский химик Бертолле, производивший для Наполеона взрывчатые вещества, экспериментируя с солями серебра, получил серебряную соль гремучей кислоты – фульминат серебра. Вначале эксперименты проходили успешно. Новая взрывчатка оказалась необыкновенно мощной. Но стволы орудий не обладали достаточной прочностью для того, чтобы направлять стремительно расширяющиеся газы к дулу, и лопались. При взрыве черный порох испускает газы относительно медленно, тогда как фульминаты – практически мгновенно, однако сильнейший взрыв неизменно разрушал металл орудия. Примерно в 1799 году Говард получил фульминат ртути, но и он обладал такой же сокрушительной взрывчатой силой. Практически все ранние эксперименты с фульминатами давали одни и те же неудовлетворительные результаты. Было найдено вещество изумительной взрывчатой силы, но его оказалось невозможно «приручить». Постоянные неудачи повлекли за собой разочарование и отказ от продолжения опытов. Для появления идеи о применении гремучих соединений в детонаторах был необходим свежий взгляд преподобного Форсайта, но этот вопрос рассматривается в соответствующем месте.

Возник и более научный подход к рассмотрению старых ингредиентов. Было осознано, что сера и древесный уголь представляют собой сгораемую часть смеси, а селитра доставляет им необходимый для горения кислород. Если бы удалось найти замену селитре, то смесь могла бы гореть быстрее. Следует помнить, что освоение процесса очистки селитры обеспечило взрывчатую силу всей смеси, но дальнейшее совершенствование в этом направлении было уже невозможно.

 

Первый шаг на пути к получению нового взрывчатого вещества был сделан в 1845 году, когда Шенбейн обработал целлюлозу азотной кислотой и получил вещество, известное под названием «пушечный хлопок», нитроцеллюлоза или пироксилин. На целлюлозу[97]также действовали серной кислотой.

Эта область исследований оказалась весьма успешной, и в 1846 году Шенбейн демонстрировал свое изобретение в Вулвиче, используя его в качестве бездымного метательного взрывчатого вещества для ручного оружия. Его производство началось в городке Феверсхем, хорошо известном своими пороховыми заводами, но в 1847 году предприятие было уничтожено чудовищным взрывом. Примерно в это же время аналогичную катастрофу пережила и Франция, в результате чего оба правительства отказались от производства нового вещества. Должно было пройти шестнадцать лет, прежде чем доверие к нему было восстановлено после частичного успеха, достигнутого в Австрии генералом фон Ленком. Он наладил производство «пушечного хлопка» в виде нитей или пряжи, туго намотанных на бобины. При использовании этого метода нити невозможно было намотать столь плотно, чтобы полностью исключить доступ воздуха, а потому взрывчатое вещество приобретало тенденцию к нестабильному горению. Это препятствовало равномерному расширению продуктов горения, необходимому для точной стрельбы.

В 1863 году в местечке Уолтхем-Эйби, еще одном традиционном центре порохового производства, Фредерик Абель предпринял исследование «пушечного хлопка». Он разработал метод безопасного формирования из взрывчатой массы крупных блоков. Это стало достижением в производстве пироксилина, которое прежде было сопряжено с риском самопроизвольного возгорания. Хотя получаемый продукт мог безопасно применяться в торпедах и минах, вещество продолжало оставаться пористым и, как и прежде, имело тенденцию к нестабильному горению. Абель позднее еще появится в нашем рассказе.

В 1863 году на континенте Шульце предложил смешивать порох с желатином. Это последнее вещество в соединении с пушечным хлопком или другими аналогичными компонентами давало значительно менее пористую массу, сгоравшую благодаря этому более равномерно. Новое взрывчатое вещество было применено в ручном оружии, но, как выяснилось, губительно воздействовало на винтовые нарезы ствола, а потому нашло главное применение в гладкоствольных дробовиках. Этот же недостаток имелся и у состава «Порох Е. С», выпущенного в 1882 году одноименной компанией.

Поры удалось полностью устранить, когда смесь подвергли полной обработке желатином. Взрывчатое вещество прессовали, скручивали или формировали из него шнуры, которые после высыхания растворителя сохраняли форму, а после воспламенения сгорали устойчиво, слой за слоем. В 1886 году французский химик Виель предложил изготовлявшийся по аналогичной технологии порох «Poudre «В», который стал первым бездымным порохом, примененным в винтовке Лебеля. Таким образом был расчищен путь для применения всех порохов на основе нитроцеллюлозы.

Начало другой линии развития в этой области было положено в 1846 году в Турине итальянским химиком Собреро, который впервые синтезировал нитроглицерин; впрочем, первое время это вещество применялось исключительно как лекарство.

Шведский инженер Альфред Нобель в 1859 году нашел способ использовать его в качестве взрывчатого вещества. В 1862 году в Швеции он освоил его производство для взрывных работ. Первоначально нитроглицерин применялся в виде жидкости, что приводило к многочисленным несчастным случаям, но это затруднение было преодолено, когда данное взрывчатое вещество удалось получить в твердой форме. В 1867 году Нобель нашел решение этой проблемы, добавив к нитроглицерину осадочную породу Kieseiguhr [98], получив в результате продукт, хорошо известный под названием «динамит».

Вскоре у Нобеля возникла идея растворить в нитроглицерине 8 процентов нитроцеллюлозы. Получившееся мощное взрывчатое вещество получило название «гремучий студень». Так появились двухосновные взрывчатые вещества, хотя ранее считалось, что одного базового компонента достаточно. Позднее Нобель увеличил содержание нитроглицерина почти до половины и, применив для объединения двух видов взрывчатки камфару, получил вещество, которое можно было раскатывать или резать для получения требуемых размера и формы. Оно было запатентовано под названием «баллистит».

Великобритания не отставала в этих исследованиях. Был образован Комитет по взрывчатым веществам, президентом которого назначили ставшего к тому времени баронетом Фредерика Абеля. Начались поиски бездымного метательного взрывчатого вещества, способного стабильно гореть и иметь неизменные баллистические характеристики. Множество экспериментов привело к вышеупомянутой двухосновной смеси, обработанной ацетоном. Кроме того, для облегчения процесса растворения и предотвращения загрязнения стволов добавляли некий студенистый минеральный раствор, который, как выяснилось, еще и обеспечивал более стабильное горение. Конечному продукту перед затвердеванием придавали форму длинного шнура[99], из-за чего вещество и получило название «кордит». Его появление сопровождалось таким количеством судебных исков, что этот сорт бездымного пороха получил прозвище «дискордита»[100].

Выпускалось множество разновидностей кордита, но основная идея оставалась неизменной. Во время Первой мировой войны нехватка ацетона, использовавшегося в производстве этого пороха в качестве растворителя-пластификатора, привела к его замене смесью эфиром со спиртом, в результате чего новый состав получил название «кордит RDB». Кроме того, британские заводы оказались не в состоянии производить необходимое количество кордита, что привело к необходимости использования его американского эквивалента. Это был порох № 16 производства компании «Дюпон», ставший известным в британской армии как NC23[101].

 

СНАРЯДЫ

 

В те времена, когда порох стали использовать в военной технике, при стрельбе из механических метательных машин уже были в ходу снаряды, которые могли найти применение и в новой отрасли военной техники. Одна из существовавших тогда машин использовала удар оттянутого назад конца доски для посылки в сторону неприятеля тяжелой железной стрелы – дарта, который часто снабжался бронзовым оперением. Несмотря на вопиющее неудобство формы, дарты употребили и для стрельбы из пушек. Отсутствие плотного контакта со стенками ствольного канала удавалось отчасти компенсировать обертыванием стрелы в кусок кожи, возможно намоченной в воде, чтобы хоть в какой-то мере устранить прорыв и бессмысленную растрату газов, образовывавшихся при взрыве заряда. Дарты продолжали неплохо работать. Фруассар отметил, что в 1377 году эти снаряды весом 200 фунтов пробивали стены замка Шато-Одрюк в окрестностях Сент-Омера. Во времена королевы Елизаветы дарты все еще использовались для стрельбы из «карриеров».

Однако самым успешным снарядом стало ядро, также применявшееся до изобретения огнестрельного оружия в метательных машинах типа гигантской пращи и арбалета. С пращами использовались каменные ядра, а с арбалетами – свинцовые пульки или маленькие ядра. Во французском документе 1345 года упоминается свинцовое ядро. Хранитель личного гардероба короля Эдуарда III Роберт де Милденхолл в своих отчетах указывал, что 1 и 2 сентября 1346 года в Кале было отправлено семьдесят три больших свинцовых ядра, тридцать одно малое и шесть слитков свинца. Нам известно, что в 1346 году у Турне пушка Петера из Брюгге стреляла свинцовыми ядрами весом в два фунта. В 1356 году при взятии Роморантена в провинции Берри Черный принц[102], чтобы выкурить защитников города, с успехом стрелял из пушек зажигательными ядрами, от которых загорелись крыши и деревянные строения.

Отчеты за 1373–1374 годы, представленные секретарем личного гардероба короля Джоном Слефордом, показывают, что изготовлением «пулек» для пушек в эти времена занимались в Тауэре.

Необычное ядро было изобретено неким жестянщиком из Брюгге. В 1346 году городские старшины заказали чугунную пушку с каналом ствола квадратного сечения, ядра для которой должны были иметь форму куба и весить 11 фунтов. Орудие оказалось работоспособным и достаточно эффективным при пробивании городских стен.

 

Рис. 29. Артиллерийские снаряды: а – пушечное ядро; б – цепное ядро; в – бомба; г – «вязаная» картечь; д – ядро с деревянным башмаком; е – картечь в картузе; ж – снаряд Армстронга; з – снаряд с выступами для сцепления с нарезами; и – снаряд Уитворта; к – зажигательный артиллерийский патрон

 

Широко использовались и каменные ядра. Отчеты королевского гардероба за 1382–1388 годы показывают, что Ральф де Хэлтон закупил круглые каменные ядра у Уильяма Вудварда. Ремесленникам, занятым на этой сугубо специализированной работе, платили по 6 пенсов в день, но по прошествии десяти лет оплата повысилась до 1 шиллинга в день.

Каменные ядра, хотя и требовали меньше времени на изготовление, часто раскалывались при стрельбе по крепким стенам. К 1350 году в Англии уже производились литые чугунные ядра, но каменные продолжали оставаться в ходу еще многие годы. Осадная артиллерия работала прекрасно – к примеру, в 1464 году при осаде Бамборо, когда этот замок отказался сдаться королю Эдуарду, его укрепления были разнесены до основания. Осадные пушки производили столь устрашающее действие, что был даже зафиксирован случай, когда одного только прибытия осадного обоза оказалось достаточно, чтобы принудить гарнизон к сдаче.

В 1491 году венецианцы в битве на реке Таро стреляли во французов чугунными, бронзовыми и свинцовыми ядрами, но уже к концу XVI века общеупотребительными стали снаряды из литого чугуна. Проводились опыты с различными вариантами ядер. Так, каменные ядра пробовали покрывать свинцом, а чугунные изготавливали самых различных форм. Против кораблей использовали ядра-болванки (полушария, прикрепленные с двух сторон к чугунному бруску) и цепные ядра (чугунные полусферы, соединенные отрезком цепи) – идея заключалась в том, чтобы расширить поле действия снаряда и снести такелаж и мачты.

Сферические ядра использовались до 1875 года, но задолго до этого начались эксперименты с удлиненными снарядами. Как только была признана цилиндрическая форма, очень скоро выяснилось, что заостренный нос способствует полету. Ко времени Крымской войны пушки Армстронга использовали продолговатые снаряды с поверхностью, покрытой свинцом. Это мягкое покрытие хорошо зацеплялось за нарезные канавки ствола. В то же время орудие Уитворта имело восьмигранный канал, что вынуждало применять снаряд необычной формы с изогнутыми поверхностями, который бы подходил к такому стволу.

Пушки повсеместно стали нарезными, и было принято решение сократить количество канавок до трех. Чтобы обеспечить зацепление снаряда за нарезы и заставить его вращаться, на его поверхность пробовали помещать специальные выступающие нашлепки. Было установлено, что свинцовое покрытие склонно «обдираться» внутри ствола, что через некоторое время приводило к его засорению. Снаряд с нашлепками в какой-то мере решал эту проблему, но вскоре выяснилось, что в этом случае происходит утечка газов, которые в результате не работают в полную силу. Тогда в 1878 году была введена в употребление газовая заглушка. Она представляла собой прикрепленную ко дну снаряда медную пластинку. Расширяющиеся газы расплющивали медь, которая заполняла нарезные канавки, не причиняя при этом такого вреда, как свинец. От этих идей впоследствии отказались, поскольку после введения заряжания с казенной части в употребление вошел медный поясок Вавассера, ставший прообразом поныне применяемого направляющего пояса. Примерно в это же время снаряды начали делать из стали вместо чугуна, который так долго применялся в этом производстве.

Следующим шагом должно было стать объединение снаряда и заряда в одно целое, как это уже произошло в области ручного оружия. Кордит, появившийся примерно в 1890 году, стал изобретением, позволившим создать унитарные снаряды быстрого заряжания, однако быстро выяснилось, что заряды фиксированной мощности требуются отнюдь не всегда. Поэтому для случаев, когда требовалась повышенная дальность стрельбы, было предусмотрено раздельно-гильзовое заряжание, обеспечивавшее возможность увеличения заряда за счет добавочных порций взрывчатки в шелковой или иной упаковке, закладываемых в зарядную камеру.

Мысль о ведении огня из орудия единичными снарядами казалась некоторым изобретателям непродуктивной растратой энергии, в силу чего была испробована альтернатива – одновременная стрельба несколькими пулями, мелкими камнями или кусочками металла, иначе говоря – картечью. Не связанные между собой картечины при выстреле далеко улететь не могли, но, помещенные в банку или жестянку, оказывались способны, перед тем как рассеяться, преодолеть изрядное расстояние. В качестве такой – упакованной в банку, или «картуз», – картечи в некоторых случаях использовали осколки кремня. Существование пушек, стрелявших «баночной» картечью, было отмечено в 1410 году, равно как и при осаде Белграда в 1439 и Константинополя в 1453 году. Эта картечь состояла из множества мелких свинцовых пуль, уложенных в жестяной или деревянный корпус. Однако такой снаряд мог долететь по назначению целиком, не развалившись. Для преодоления этого недостатка была придумана «вязаная» картечь. К деревянному или металлическому диску приделывали центральный стержень, вокруг которого веревками или с помощью внешней тканевой оболочки крепились мелкие чугунные пули. Объединение мелких пуль в некое подобие грозди породило ее английское название – «grapeshot» («виноградная» картечь). Пороховые газы при выстреле поджигали связующую оболочку, которая и выгорала в полете, после чего отдельные картечины разлетались во все стороны. В одной испанской крепости в 1740 году было запасено 2000 мешков картечи. Производство «вязаной» картечи продолжалось до 1868 года.

Логичным шагом вперед от одинаковых картечин, заложенных в кассету, стала шрапнель и картечные гранаты с дистанционными трубками, но прежде, чем перейти к их рассмотрению, мы должны проследить развитие зажигательных и разрывных снарядов.

Мысль о монолитном ядре, проламывающем себе дорогу сквозь препятствие, была проста и не вызывала при реализации никаких сложностей. Но и другие методы, не похожие на этот, не только испытывались, но и находили эффективное применение. Против судов и других легко воспламеняющихся целей начали использовать раскаленные ядра. Еще древние бритты во время второго вторжения Цезаря в 54 году до н. э. зажгли палатки римлян, забросав их раскаленными докрасна глиняными ядрами.

Этим методом вновь воспользовался в 1575 году польский король Стефан Баторий, применивший каленые пушечные ядра при осаде Данцига. Опасность воспламенения заряда была преодолена посредством использования двух пыжей – сухого со стороны пороха и мокрого – для прекращения горения в стволе. Примитивным способом для предохранения заряда от нагрева мог служить и толстый пыж из дерна, но в этом случае стрелять надо было очень быстро, прежде чем жар успевал проникнуть в камору. Применение пыжей из дерна было сопряжено с опасностью, примером чему может служить сохранившаяся в Ротонде шестифунтовая пушка. Это орудие служило в 1783 году на острове Сент-Люсия в Вест-Индии для производства выстрелов, отмечавших наступление ночи, но даже мокрый пыж не спас ее от разрыва.

Наибольший успех от применения раскаленых ядер был достигнут британской артиллерией в 1779–1783 годах при осаде Гибралтара. Их использование против испанских кораблей оказалось столь эффективно, что артиллеристам даже вручали особую «медаль Каленого Ядра». На одной ее стороне была изображена калильня – печь для нагрева ядер. Два человека на металлических носилках перемещали раскаленное ядро от печи к пушке. Преимущество каленых ядер заключалось в том, что такой снаряд, упав на деревянный корабль, прожигал все на своем пути, причем, пройдя сквозь палубу, он мог попасть в пороховой погреб или даже насквозь прошить корпус судна. Эта идея находила применение вплоть до 1870 года.

Утверждается, что раскаленные ядра были в 1850 году заменены более эффективным снарядом, изобретенным неким штатским по фамилии Мартин. Это была тонкостенная чугунная сфера, выложенная по внутренней поверхности слоем огнеупорной глины. Незадолго до использования ее наполняли расплавленным чугуном.

Большая часть каленых ядер устарела, когда военный флот перешел от деревянных корпусов к бронированным. К тому же применение раскаленных докрасна ядер имело ограничения, поскольку их было трудно раскалять и они очень быстро остывали. Куда более эффективными и надежными были зажигательные снаряды. Эти, поначалу круглые, емкости, непосредственными прародителями которых были огненные горшки или вазы, бросаемые при помощи катапульт, могли содержать зажигательные или взрывчатые вещества. Стреляли ими, как правило, из мортир.

В 1376 году при Джадре венецианцы использовали такие мортирные бомбы, составленные из двух пустотелых полусфер, соединенных железным обручем. Бомбы с запалами также применялись в 1421 году на Корсике при осаде Сан-Бонифачо.

В 1543 году в Англии Питер Боде и Коллет делали мортиры, стрелявшие чугунными снарядами, которые были «начинены огневым составом, или «греческим огнем». В такую бомбу ввинчивалась железная запальная трубка для того, «чтобы огневой состав зажечь и ту бомбу разорвать в мелкие куски, из коих малейший, во всякого человека ударив, его бы убивал или сильно вредил». На знаменитой картине, изображающей осаду Булони в 1544 году, мы видим солдат, снаряжающих такие бомбы.

К 1550 году из мортир повсеместно стреляли бомбами. Английский термин «shell» – «снаряд», происходящий от немецкого слова «Schale»[103], становится общеупотребительным, более точно определяя, что же действительно имеется в виду.

Бомбы все более детализируются, приобретая такие части, как кольца, или «уши», используемые для их переноски клещами. Зарядная горловина становится теперь частью ее корпуса.

Во время Гражданской войны при осаде Глостера «Гренада» (бомба), выпущенная роялистами, упала на улице близ Южных ворот, однако «некая женщина, проходившая мимо с ведром воды, вылила свою воду на оную Гренаду и фитиль ее погасила, отчего она вовсе не разорвалась». При нападении войск Кромвеля на Форт-Элизабет в Джерси они удачно использовали разрывные «Гренады». Для этого случая были заказаны тысяча запалов для бомб и 600 ручных запалов. Фейерверкмейстер Томас Райт так хорошо нацелил 5 У2-дюймовую мортиру, что первым выстрелом попал в главную башню крепости. Около 1700 таких гранат или бомб было переделано для стрельбы не только из мортир, но также из гаубиц.

Тип зажигательного ядра, известного под названием «каркас», был изобретен за тридцать лет до этого канониром, состоявшим на службе у архиепископа Мюнстера Христофора ван Галена, знаменитого своей деятельностью в военной сфере. Каркасы имели толстый чугунный корпус, часто – продолговатый и снабженный несколькими отверстиями, которые позволяли зажигательному составу вырываться наружу. Смесь состояла из селитры, серы, сосновой смолы, скипидара, сульфида сурьмы и сала. Она горела с громадной интенсивностью от трех до двенадцати минут, причем даже под водой. Ее практически невозможно было потушить, разве что – забросав землей. Недостатком каркасов было то, что при утончении их стенок, что делалось из желания до последнего предела увеличить полезный внутренний объем, корпус терял прочность, что вызывало опасность взрыва в стволе пушки. При осаде Квебека этот недостаток был преодолен с помощью затычек или пыжей из дерна, которые уменьшали сотрясение от выстрела. Современным аналогом каркасов являются зажигательные бомбы с магниевой начинкой.

Снаряды в то время делались таким образом, чтобы они могли долететь от пушки до расположенной на земле цели и сокрушить ее ударом, поджечь либо разрушить взрывом. Следующей стадией развития должна была стать посылка снаряда из пушки в воздух, чтобы там «передать направленную скорость» уложенным в кассету пулям. В 1573 году главный канонир Сэмуэль Циммерман предложил использовать свинцовую трубку с рассчитанным на определенную задержку запалом в конце, рядом с заложенным в ствол зарядом. Запал поджигался в момент выстрела; после чего, уже в воздухе, снаряд взрывался. Идея, тем не менее, не оказалась жизнеспособной, так как при ее воплощении возникли серьезные технические затруднения.

Первый случай успешной стрельбы из пушек разрывными снарядами – до этого их использовали только для ведения огня из мортир или гаубиц – имел место во время осады Гибралтара в 1779–1783 годах. Расстояние от наших батарей до испанских позиций достигало 2000 ярдов, а мортирные бомбы не обладали такой дальностью. Тогда капитан Мерсьер из 39-го пехотного полка предложил стрелять 5, 5-дюймовыми мортирными бомбами из 24-фунтовых пушек. Чтобы компенсировать большую скорость полета, для того чтобы снаряд врывался в нужный момент, было рекомендовано пользоваться более короткими запальными трубками. Идея была опробована, и снаряды стали рваться над головами неприятельских рабочих команд. Несмотря на успех в ходе кампании, по ее окончании идея была забыта.

Тем не менее работа не пропала втуне. Артиллерийский офицер Генри Шрапнель писал в 1813 году, что он на протяжении почти тридцати лет проводил опыты, которые привели его к созданию практичного пушечного снаряда, который он назвал «сферическим коробом». Еще в 1792 году герцог Ричмонд посоветовал лейтенанту Шрапнелю заняться экспериментами по использованию «картечи в обшивке и в коробах», а также разрывных снарядов, начиненных мушкетными пулями. Новый тип боеприпасов приняли на вооружение в 1803-м, а уже в следующем году Шрапнель не только был назначен первым инспектором артиллерии, но и получил из Суринама, где его новые боеприпасы были использованы при наступлении, благоприятные отзывы о них. Сферический короб, наполненный пулями и способный взрываться в воздухе, был в 1808 году применен против французов в Веймарском сражении.

Заряд, производивший выстрел, Шрапнель сделал по возможности более мощным, чтобы обеспечить большую дальность полета снаряда. Однако стенки корпуса, наполненного пулями, делались тонкими, поэтому заряд, необходимый для его разрыва и разбрасывания пуль, мог быть минимальным. Название, первоначально данное новому боеприпасу, – «сферический картечный короб» – спустя примерно десять лет после кончины изобретателя было изменено на «шрапнель». Награду за свое изобретение он получил еще при жизни, в 1814 году Шрапнелю была назначена пенсия – 1200 фунтов стерлингов в год, которой он и пользовался вплоть до своей смерти в 1842 году.

Деталь, которая позволила создать шрапнельный снаряд, – дистанционная запальная трубка – одновременно являлась и его недостатком. Эволюция запалов так же важна, как эволюция в любой другой сфере артиллерийского искусства. Сам разрывной снаряд невозможно детонировать тем же способом, что и его метательный заряд. Первоначально в корпус снаряда помещали кусок фитиля, который мог прогореть в нужный момент, но с той же легкостью мог сделать это слишком рано или слишком поздно. В начальный период создания запалов достаточно было, чтобы взрыв произошел, когда снаряд достигнет цели. Тогда считалось, что снаряд, взорвавшийся в полете, потрачен впустую, но изобретение заключенной в корпус шрапнели заставило изменить эти представления.

Деревянные запальные трубки получили распространение начиная с XVII столетия. К 1850 году использовалось девятнадцать различных дистанционных трубок, из которых три были металлические. Затем капитан Боксер предложил свой взрыватель, который устранил многие проблемы. Он представлял собой пустотелую деревянную пробку с множеством мелких отверстий в стенках. Центральный канал взрывателя заполнялся черным порохом, который после воспламенения прогорал до заранее выбранного отверстия, после чего огонь проникал в основной заряд взрывчатого вещества. Запал Боксера был надежен и оставался в ходу многие годы, но в конце концов возникла потребность в контактных (ударных) и инерционных взрывателях. Первые должны были срабатывать в момент удара снаряда о землю, вторым отсчет времени, оставшегося до срабатывания, следовало начинать после сотрясения, вызванного взрывом метательного заряда. Элементарным контактным взрывателем был фитиль сферических бомб, который проваливался внутрь корпуса при ударе о землю, однако для современной войны требовались более надежные методы. Первый английский инерционный взрыватель был сконструирован в 1846 году артиллеристом, квартирмейстером Фрибурном, а через четыре года коммандер Мурсон представил свой ударный взрыватель.

К середине XIX века в области пушечных боеприпасов наметилась тенденция объединения различных линий развития в единую концепцию. Крупные снаряды стали делать разрывными. Они получили способность сокрушать цель тяжестью удара или взрывом при падении, разрываться в воздухе или в любой другой нужныймомент. Были введены такие усовершенствования, как канавки внутри корпуса снаряда, которые способствовали его более легкому разрыву. Свинцовые шрапнельные пули при разрыве снаряда часто спекались от нагрева, но особая обработка свинца, увеличивавшая его твердость, и применение в качестве «смазки» угольной пыли уменьшили влияние этого эффекта. К 1896 году черный порох перестал применяться в качестве «начинки» разрывных снарядов. В 1891 году в употребление вошел кордит, также получило признание взрывчатое вещество под наименованием лиддит[104].

Позднее стали использовать такие взрывчатые вещества, как TNT (тротил) и аматол[105].

Какими бы сложными ни казались разработки того времени, они совершенно незначительны по сравнению с современными тенденциями развития в этой области. Снаряды, когда-то считавшиеся необходимыми только для поражения неподвижных объектов, ныне имеют конструкцию, позволяющую им самостоятельно отыскивать быстро движущуюся цель и, приблизившись на достаточное расстояние, взрываться, опустошая все вокруг.

 


Поделиться:



Популярное:

  1. XXII. ПРАВОВЫЕ ОСНОВЫ ОБРАЩЕНИЯ С ВЕЩЕСТВАМИ,
  2. А сейчас у Вас есть желание вернуться в эту область? Тогда это было всё гораздо сложнее технически: и монтаж, и сбор информации, и другие аспекты.
  3. Абонемент на космические путешествия и другие религиозные убеждения, которые заставляют вас препятствовать собственному успеху и счастью
  4. Анти-частицы. Взаимные превращения вещества и поля.
  5. Антипитательные вещества зеленых, грубых и сочных кормов.
  6. БИЛЕТ 6 Диэлектрическая проницаемость вещества. Электрическое поле в однородном диэлектрике.
  7. Влияния на другие тканевые реакции
  8. ВНП и ВВП, способы измерения. Другие показатели дохода и продукта
  9. Все, что случалось в твоей жизни, случалось именно для того, чтобы ты—и другие связанные с тобой души — развились в точности в том направлении, в каком тебе следовало и хотелось расти.
  10. Выживания, чем отличаются другие, более удачливые пятьдесят процентов? Ответ - почти ничем.
  11. Глава 3. Другие ценные бумаги
  12. Глава 5. ДРУГИЕ ВИДЫ ИСПОЛЬЗОВАНИЯ ТЕХНИКИ


Последнее изменение этой страницы: 2016-07-13; Просмотров: 981; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.032 с.)
Главная | Случайная страница | Обратная связь