Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Основные физические постоянные (округленные значения) ⇐ ПредыдущаяСтр 3 из 3
Таблица 2 Плотность твердых тел
Таблица 3 Относительные атомные массы (округленные значения) А и порядковые номера Z некоторых элементов
Таблица 4 Масса нейтральных атомов
Таблица 5 Масса покоя и заряд некоторых элементарных частиц
Таблица 6 Внесистемные единицы, допущенные к применению в учебном Процессе по физике (в соответствии со стандартом СЭВ 1052-78)
*) Допускается применение других единиц времени, получивших широкое распространение, например, неделя, месяц, год и др.
Контрольная работа № 1 101. Материальная точка движется по окружности со скоростью меняющейся по закону V = At (А = 4 м/с2 ). Найти тангенциальное аτ , нормальное аn, и полное а ускорения точки в момент времени, когда она сделает первый оборот. 102. Камень брошен с вышки в горизонтальном направлении с начальной скоростью Vо= 10 м/с. Определить скорость V, тангенциальное аτ и нормальное аn ускорения камня в конце второй секунды движения. Сопротивлением воздуха пренебречь. 103. Зависимость пройденного телом пути от времени задается уравнением s = A - Bt + Ct2 + Dt3 (A = 6 м, В = 3 м/с, С = 2 м/с2, D = 1 м/с3 ). Определить для тела в интервале времени от t1 = 1 c до t2 = 4 c: 1) среднюю скорость; 2) среднее ускорение. 104. Материальная точка движется прямолинейно с начальной скоростью V0 = 10 м/с и с постоянным ускорением а = -5 м/с2. Определить, во сколько раз путь DS, пройденный материальной точкой, будет превышать модуль ее перемещенияDr спустя t = 3 с после начала отсчета времени. 105. Диск радиусом R = 20 см, находящийся в состоянии покоя начал вращаться с постоянным угловым ускорением ε = 0, 4 рад/с2. Найти нормальное аn тангенциальное аτ и полное а ускорения точек на окружности диска в конце третьей секунды после начала движения 106. Тело брошено под углом a = 30° к горизонту со скоростью = 30 м/с. Каковы будут нормальное аn и тангенциальное аt ускорения тела через время t = 1 с после начала движения? 107. Материальная точка движется по окружности с постоянной угловой скоростью w = p/6 рад/с. Во сколько раз путь DS, пройденный точкой за время t = 4 с, будет больше модуля ее перемещения Dr? 108. Материальная точка движется в плоскости ХУ, согласно уравнениям Х = А1+В1t+С1t2 и У = А2+В2t+С2t2, где В1 = 7 м/с, С1 = -2 м/с, В2 = -1 м/с, С2 = 0, 2 м/с2. Найти скорость и ускорение точки в момент времени t = 5 с. 109.Движение точки по кривой задано уравнениями Х = Аt2 и У = Вt, где А = 0, 5 м/с2, В = 2 м/с. Найти уравнение траектории точки, ее скорость V и полное ускорение а в момент времени t = 2 с. 110. Точка движется по окружности радиусом R = 30 см с постоянным угловым ускорением e. Определить тангенциальное ускорение аt точки, если известно, что за время t = 4 с она совершила три оборота и в конце третьего оборота ее нормальное ускорение аn = 2, 7 м/с2.
111. В деревянный шар массой m1 = 2 кг, подвешенный на нити длинной L = 1, 8 м, попадает горизонтально летящая пуля массой m2= 9 г. С какой скоростью летела пуля, если нить с шаром и застрявшей в нем пулей отклонилась от вертикали на угол a = 12°? Размером шара пренебречь. Удар пули считать прямым, центральным. 112. Шар массой m1= 1 кг движется со скоростью V1 = 4 м/c и сталкивается с покоящимся шаром массой m2 = 3кг. Каковы скорости U1 и U2 шаров после удара? Удар считать абсолютно упругим, прямым, центральным. 113. Два пластелиновых шарика массами m1 = 50 г и m2 = 90 г подвешены на нитях длиной L = 70 см. Первоначально шарики соприкасаются между собой, затем больший шарик отклонили на угол α = 60о и отпустили. Считая удар центральным и неупругим, определить: 1) высоту h на которую поднимутся шарики после удара; 2) энергию Δ Т израсходованную на деформацию шаров при ударе. 114. Неподвижная молекула распадается на два атома, причем масса одного атома в два раза больше массы другого. Найти кинетические энергии Т1 и Т2 атомов, если их суммарная кинетическая энергия Т=0, 016 нДж. 115. Определить КПД h неупругого удара бойка массой m1= 0, 5 т, падающего на сваю массой m2 = 120 кг. Полезной считать энергию, затраченную на вбивание сваи. 116. Шар массой m1= 4 кг движется со скоростью V1 = 5 м/с и сталкивается с шаром массой m2 = 6 кг, который движется ему навстречу со скоростью V2 = 2 м/с. Определить скорости U1 и U2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным. 117. Шар массой m1 = 2 кг сталкивается с покоящимся шаром большей массы и при этом теряет 40% кинетической энергии. Определить массу m2 большего шара. Удар считать абсолютно упругим, прямым, центральным 118. Шар массой m1= 5 кг движется со скоростью V1= 1 м/с и сталкивается с покоящимся шаром массой m2 = 2 кг. Определить скорость U шаров после абсолютно неупругого удара. Найти энергию Δ Т, израсходованную на деформацию шаров при ударе. 119. При разрыве снаряда, летящего со скоростью V = 600 м/с, образовались три равных осколка с равными массами m=10 кг. Суммарная кинетическая энергия всех осколков Т=8, 1 МДж. Какую наибольшую скорость может приобрести один из осколков? Вращением осколков пренебречь. 120. Молотом массой m1 = 5 кг ударяют по небольшому куску железа, лежащего на наковальне массой m2 = 120 кг. Определить КПД η удара. Полезной считать энергию, идущую на деформацию железа.
121. На обод маховика диаметром D = 60 см намотан шнур, к концу которого привязан груз массой m = 2 кг. Определить момент инерции J маховика, если он, вращаясь равноускоренно под действием силы тяжести груза, за время t = 3 с приобрел угловую скорость w = 9 рад/с 122. К шкиву сплошного маховика диаметром D = 75 см и массой m = 40 кг приложена касательная сила F = 1 кН. Определить угловое ускорение e и частоту вращения n маховика через время t = 10 c после начала действия силы, если радиус r шкива равен 12 см. Силой трения пренебречь. 123. На сплошной блок радиусом R = 6 см намотан шнур, к которому привязан груз массой m = 0, 5 кг. Опускаясь равноускоренно, груз прошел путь s = 1, 5 м за время t = 4 с.Определить момент инерции Ј блока. 124. Нить с привязанными к ее концам грузами массами m1 = 50 г и m2 = 60 г перекинута через блок диаметром D = 4 см. Определить момент инерции J блока, если под действием силы тяжести грузов он получил угловое ускорение e = 1, 5 рад/с2. Трением и проскальзыванием нити по блоку пренебречь. 125. Стержень вращается вокруг оси, проходящей через его середину, согласно уравнению j = Аt+Bt3, где А = 2 рад/с, В = 0, 2 рад/с3. Определить вращающий момент М, действующий на стержень через время t = 2 с после начала вращения, если момент инерции стержня J = 0, 048 кг× м2. 126.Через блок, имеющий форму диска массой m = 0, 4 кг, перекинут шнур, к концам которого подвешены грузы массами m1 = 0, 3 кг и m2 = 0, 7 кг. Определить силы натяжения Т1 и Т2 шнура по обе стороны блока. Массой шнура пренебречь, трение в оси блока отсутствует. 127. Определить момент силы М, который необходимо приложить к блоку, вращающемуся с частотой n = 12 с-1, чтобы он остановился в течение времени Dt = 8с. Диаметр блока D = 30см. Массу блока m = 6 кг считать равномерно распределенной по ободу. 128. К краю стола прикреплен блок. Через блок перекинута невесомая и нерастяжимая нить, к концам которой прикреплены грузы. Один груз движется по поверхности стола, а другой - вдоль вертикали вниз. Определить коэффициент f трения между поверхностями груза и стола, если массы каждого груза и масса блока одинаковы и грузы движутся с ускорением а = 3, 6 м/с2. Проскальзыванием нити по блоку и силой трения, действующей на блок, пренебречь. 129.На сплошной блок радиусом R = 10 см, момент инерции которого Ј = 0.042 кг·м2, намотана легкая нить, к концу которой прикреплен груз массой m = 0, 4 кг. До начала вращения блока высота h груза над полом cоставляла 1, 8 м. Определить: 1) силу натяжения нити во время движения; 2) время опускания груза до пола; 3) кинетическую энергию груза в момент удара о пол 130. К концам легкой и нерастяжимой нити, перекинутой через блок, подвешены грузы массами m1 = 0, 2 кг и m2 = 0, 3 кг. Во сколько раз отличаются силы, действующие на нить по обе стороны от блока, если масса блока m = 0, 4 кг. Силами трения и проскальзывания нити по блоку пренебречь. 131. На скамье Жуковского сидит человек и держит на вытянутых руках гири массой m = 5 кг каждая. Расстояние от каждой гири до оси скамьи L1= 70 см. Скамья вращается с частотой n1 = 1 с-1. Как изменится частота вращения скамьи и какую работу А произведет человек, если он сожмет руки так, что расстояние от каждой гири до оси уменьшится до L2 = 20 см? Момент инерции человека и скамьи (вместе) относительно оси J = 2, 5 кг× м2. 132. На скамье Жуковского стоит человек и держит в руках стержень вертикально по оси скамьи. Скамья с человеком вращается с угловой скоростью w1 = 4 рад/с. С какой угловой скоростью w2 будет вращаться скамья с человеком, если повернуть стержень так, чтобы он занял горизонтальное положение? Суммарный момент инерции человека и скамьи J = 5 кг× м2. Длина стержня L = 1, 8 м, масса m = 6 кг. Считать, что центр масс стержня с человеком находится на оси платформы. 133. Платформа в виде диска диаметром D = 3 м и массой m1= 180 кг может вращаться вокруг вертикальной оси. С какой угловой скоростью w1 будет вращаться эта платформа, если по ее краю пойдет человек массой m2 = 70 кг со скоростью V = 1, 8 м/с относительно платформы. 134. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек. На какой угол j повернется платформа, если человек пойдет вдоль края платформы и, обойдя ее, вернется в исходную (на платформе) точку? Масса платформы m1 = 280 кг, масса человека m2 = 80 кг. 135. На скамье Жуковского стоит человек и держит в руке за ось велосипедное колесо, вращающееся вокруг своей оси с угловой скоростью w1 = 25 рад/с. Ось колеса расположена вертикально и совпадает с осью скамьи Жуковского. С какой скоростью w2 станет вращаться скамья, если повернуть колесо вокруг горизонтальной оси на угол a = 180°? Момент инерции человека и скамьи равен 2, 5 кг× м2, момент инерции колеса J = 0, 5 кг× м2. 136. Однородный стержень длиной L = 1, 0 м может свободно вращаться вокруг горизонтальной оси, проходящей через один из его концов. В другой конец абсолютно неупруго ударяет пуля массой m = 10 г, летящая перпендикулярно стержню и его оси. Определить массу M стержня, если в результате попадания пули он отклонился на угол a = 60°. Принять скорость пули V = 360 м/с. 137. На краю платформы в виде диска, вращающейся по инерции вокруг вертикальной оси с частотой n1 = 8 мин-1, стоит человек массой m1 = 70 кг. Когда человек перешел в центр платформы, она стала вращаться с частотой n2 = 10 мин-1. Определить массу платформы. Момент инерции человека рассчитывать как для материальной точки. 138. На краю неподвижной скамьи Жуковского диаметром D = 0, 8 м и массой m1 = 6 кг стоит человек массой m2 = 60 кг. С какой угловой скоростью w начнет вращаться скамья, если человек поймает летящий на него мяч массой m = 0, 5 кг? Траектория мяча горизонтальна и проходит на расстоянии r = 0, 4 м от оси скамьи. Скорость мяча V = 5 м/с. 139. Горизонтальная платформа массой m1 = 150 кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой n = 8 мин-1. Человек массой m2 = 70 кг стоит при этом на краю платформы. С какой угловой скоростью w начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу круглым, однородным диском, а человека - материальной точкой. 140. Однородный стержень длиной L = 1, 0 м и массой M = 0, 7 кг подвешен на горизонтальной оси, проходящей через верхний конец стержня. В точку, отстоящую от оси на 2/3 L, абсолютно неупруго ударяет пуля массой m = 10 г, летящая перпендикулярно стержню и его оси. После удара стержень отклонился на угол a = 60°. Определить скорость пули. 141. В баллоне вместимостью V = 15 л находится аргон под давлением р1 = 600 кПа и температуре Т1 = 300 К. Когда из баллона было взято некоторое количество газа, давление в баллоне понизилось до р2 = 400 кПа, а температура установилась Т2 = 260 К. Определить массу m аргона, взятого из баллона. 142. Два сосуда одинакового объема содержат кислород. В одном сосуде давление р1 = 2 МПа и температура Т1 = 800 К, в другом р2 = 2, 5 МПа, Т2 = 200 К. Сосуды соединили трубкой и охладили находящийся в них кислород до температуры Т = 200 К. Определить установившееся в сосудах давление р. 143. В сосуде объемом V = 10 л при температуре Т = 450 К находится смесь азота массой m=5 г и водорода массой m=2 г. Определить давление Р смеси.. 144. Найти удельные теплоемкости Сv и Ср смеси кислорода массой m1= 2, 5 г и азота m2 = 3 г. 145. Определить суммарную кинетическую энергию Ек поступательного движения всех молекул газа, находящегося в сосуде вместимостью V = 3 л под давлением р = 540 кПа. 146. Молярная внутренняя энергия Um некоторого двухатомного газа равна 6, 02 кДж/моль. Определить среднюю кинетическую энергию < eвр> вращательного движения одной молекулы этого газа. Газ считать идеальным. 147. Водород массой m = 2 г был нагрет на Δ Т = 100 К при постоянном давлении р. Найти: 1) количество теплоты Q, переданную газу; 2) работу А расширения газа; 3) приращение Δ U внутренней энергии газа. 148. 10 г кислорода находятся в сосуде под давлением р = 300 кПа и при температуре 20 оС. После изобарического нагревания газ занял объем V = 10 л. Найти количество теплоты полученное газом, изменение внутренней энергии газа и работу, совершенную газом при расширении. 149. При изотермическом расширении 20 г азота, находившегося при температуре 17 оС была совершена работа А = 960 Дж. Во сколько раз изменилось давление газа при расширении? 150. Кислород массой m = 120 г занимает объем V1= 80 л и находится под давлением Р1= 200 кПа. При нагревании газ расширяется при постоянном давлении до объема V2= 300 л, а затем его давление возросло до Р2= 500 кПа при неизменном объеме. Найти изменение внутренней энергии Δ U газа, совершенную им работу А и теплоту Q, переданную газу. Построить график процесса. 151. Два одинаково заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол a. Шарики погружают в масло. Какова плотность r масла, если угол расхождения нитей при погружении в масло остается неизменным? Плотность материала шариков r0 = 1, 5× 103 кг/м3, диэлектрическая проницаемость масла e = 2, 2. 152. Три одинаковых точечных заряда Q1 = Q2 = Q3 = 2 нКл находятся в вершинах равностороннего треугольника со сторонами а = 10 см. Определить модуль и направление вектора напряженности Е электрического поля, созданного зарядами в точке, равноудаленной от этих зарядов. 153. Точечные заряды Q1 = 30 мкКл и Q2 = - 20 мкКл находятся на расстоянии d = 20 см друг от друга. Определить напряженность электрического поля Е в точке, удаленной от первого заряда на расстояние r1 = = 30 cм, а от второго - на r2 = 15 см. 154. Тонкий стержень длиной l = 20 см несет равномерно распределенный заряд t = 0, 1 мкКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке, лежащей на оси стержня на расстоянии а = 20 см от его конца. 155. На расстоянии d = 20 см находятся два точечных заряда Q1 = -50 нКл и Q2 = 100 нКл. Определить силу F, действующую на заряд Q3 = -10 нКл, удаленный от обоих зарядов на одинаковое расстояние, равное d. 156. По тонкому полукольцу радиуса R = 20 см равномерно распределен заряд с линейной плотностью t = 1 мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром полукольца. 157. Тонкий длинный стержень равномерно заряжен с линейной плотностью заряда τ = 10 мкКл/м. На продолжении оси стержня на расстоянии а = 20 см от его конца находится точечный заряд Q = 15 нКл. Определить силу F взаимодействия точечного заряда со стержнем. 158. К бесконечной равномерно заряженной вертикальной плоскости подвешен на нити одноименно заряженный шарик массой m = 60 г и зарядом Q = 0, 5 нКл. Сила натяжения нити, на которой висит шарик, F = 0, 8 Н. Найти поверхностную плотность заряда σ плоскости. 159. Заряженный медный шарик радиусом R = 0, 6 см помещен в масло, плотностью ρ = 0, 8·103 кг/м3. Найти заряд Q шарика, если в однородном электрическом поле напряженностью Е = 3, 2 МВ/м, направленном вертикально вверх, шарик оказался взвешенным в масле. 160. Поверхностная плотность заряда σ бесконечно протяженной вертикальной плоскости равна 300 мкКл/м2. К плоскости на нити подвешен заряженный шарик массой m = 12 г. Определить заряд Q шарика, если нить образует с плоскостью угол α = 30о. 161. Кольцо радиусом R = 10 см равномерно заряжено с линейной плотностью заряда τ = 600 нКл/м. Определить потенциал φ в точке, расположенной на оси кольца на расстоянии h = 10 см от его центра. 162. Электрон с кинетической энергией Т = 300 эВ (в бесконечности) движется вдоль силовой линии по направлению к поверхности металлической отрицательно заряженной сферы радиусом R = 15 см.Определить минимальное расстояние а, на которое приблизится электрон к поверхности сферы, если ее заряд Q =-10 нКл. 163. Электрическое поле образовано положительно заряженной длинной нитью с линейной плотностью заряда τ = 0, 25 мкКл/м. Какую скорость получит электрон под действием поля, приблизившись к нити с расстояния r1 = 2 cм до расстояния r2 = 0, 5 см? 164.Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость v =105 м/с. Расстояние между пластинами d = 6, 8 см. Найти разность потенциалов U между пластинами и поверхностную плотность заряда σ на пластинах конденсатора. 165. Найти потенциальную энергию П системы трех точечных зарядов, расположенных в вершинах равностороннего треугольника со стороной а = 15 см, если Q1 =20 нКл, Q2 = 30 нКл и Q3 =- 15 нКл. 166. Тонкое кольцо радиусом R=10 см имеет равномерно распределенный зард Q1 = 300 нКл. Какую работу надо совершить, чтобы переместить заряд Q2 =5 нКл из центра кольца в точку, расположенную на оси кольца на расстоянии h =30 см от его центра? 167. Тонкое полукольцо заряжено отрицательно с линейной плотностью заряда τ =-140 нКл/м. Какую скорость получит электрон переместившись под действием электрического поля из центра полукольца в бесконечность? 168. Протон, начальная скорость v которого равна 150 км /с влетел в однородное электрическое поле напряженностью Е = 3·103 В/м так, что его вектор скорости совпал с направлением линий напряженности. Какой путь L должен пройти протон, чтобы его скорость удвоилась? 169. Металлический шар радиусом R =5 см заряжен равномерно с поверхностной плотностью заряда σ = 1 мкКл/м2. Шар окружен слоем парафина ( ε = 2, 0 ) толщиной d=2 см. Найти потенциал φ электрического поля на расстоянии: 1) r1=1 см; 2) r2= 6 см; 3) r3=10 см от центра шара. Построить график зависимости φ (r). 170. Электрон влетел в плоский конденсатор со скоростью v =6 Мм/с, направленную параллельно пластинам. Найти скорость электрона при вылете из конденсатора, если расстояние между пластинами d =10 мм, разность потенциалов U = 20 В, длина пластин L = 6 см. 171. Два источника тока с ЭДС E1 = 1, 2 В и E2 = 2, 6 В и внутренними сопротивлениями r1= 0, 5 Ом и r2= 1, 1 Ом соответственно соединены, как показано на рис.1.1. Найти разность потенциалов между точками (а) и (б). 172. Два источника тока с ЭДС E 1= 1, 2 В и E 2= 2, 6 В и внутренними сопротивлениями r1= 0, 5 Ом и r2= 1, 1 Ом соответственно и резистор R = 10 Ом соединены, как показано на рис.1.2. Найти силы токов в источниках и резисторе. 173. Три батареи с ЭДС E1 = 12 В, E2 = 6 В и E3 = 5 В и одинаковыми внутренними сопротивлениями r равными 2 Ом соединены одинаковыми полюсами. Определить силы токов I , идущих через каждую батарею. 174. При внешнем сопротивлении R1 = 8 Ом сила тока в цепи I1 = 0, 8 А, а при сопротивлении R2 = 15 Ом сила тока I2 = 0, 5 А. Определить силу тока Iк.з короткого замыкания источника тока. 175. Батареи имеют ЭДС E1 = 2, 5 В и E2 = 1, 0 В, резисторы R1= 10 Ом, R2= 5 Ом и R3= 2 Ом, сопротивление амперметра RА= 0, 5 Ом (рис.1.3). Найти показания амперметра. 176. Два источника тока с ЭДС E1 = 2, 0 В и E2 = 1, 5 В и внутренними сопротивлениями r1= 0, 5 Ом и r2= 1, 4 Ом соответственно и резисторы R1= 5 Ом и R2= 0, 8 Ом соединены как показано на рис.1.4. Найти ток текущий через резистор R1. 177. Батареи имеют ЭДС E1 = 72 В и E2 = 36 В, резисторы R1= 100 Ом, R2= 50 Ом и R3= 20 Ом (рис. 1.5). Найти показания амперметра. 268. ЭДС элементов E1 = 2, 0 В и E2 = 1, 5 В, резисторы R1= 10 Ом, R2= 5 Ом и R3= 2 Ом (рис.1.6). Найти токи I в ветвях цепи. 179. В сеть с напряжением U = 100 В подключили катушку с сопротивлением R1 = 2 кОм и вольтметр, соединенные последовательно. Показание вольтметра U1 = 80 В. Когда катушку заменили другой, вольтметр показал U2 = 60 В. Определить сопротивление R2 другой катушки. 180. Батареи имеют ЭДС E1 = 2, 0 В и E2 = 3, 0 В, резистор R3= 1, 0 кОм, сопротивление амперметра RА= 0, 5 кОм (рис. 1.3). Падение потенциала на сопротивлении R1 равно U1= 1, 2 В (ток через R1 направлен сверху вниз). Найти показания амперметра.
Контрольная работа № 2
201. Бесконечно длинный провод с током I = 100 А изогнут так, как это показано на рис.2.1. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см. 202. Магнитный момент рm тонкого проводящего кольца pm = 5 А× м2. Определить магнитную индукцию В в точке А, находящейся на оси кольца и удаленной от кольца на расстояние r = 20 см (рис.2.2). 203. По двум скрещенным под прямым углом бесконечно длинным проводам текут токи I и 2I (I = 100 А). Определить магнитную индукцию В в точке А (рис.2.3). Расстояние d = 10 см. 204. По бесконечно длинному проводу, изогнутому так, как показано на рис.2.4, течет ток I = 200 А. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см. 205. По тонкому кольцу радиусом R = 20 см течет ток I = 100 А. Определить магнитную индукцию В на оси кольца в точке А (рис.2.5). Угол b = p/3. 206. По двум бесконечно длинным проводам, скрещенным под прямым углом, текут токи I1 и I2 = 2I1 (I1 = 100 А). Определить магнитную индукцию В в точке А, равноудаленной от проводов на расстояние d = 10 см (рис.2.6). 207. По бесконечно длинному проводу, изогнутому так, как показано на рис. 2.8, течет ток I = 200 А. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см. 208. По тонкому кольцу течет ток I = 80 А. Определить магнитную индукцию В в точке А, равноудаленной от точек кольца на расстояние r = 10 см (рис.2.7). Угол a = p/6. 209. По двум бесконечно длинным прямым, параллельным проводам, текут одинаковые токи I = 60 А. Определить магнитную индукцию В в точке А (рис.2.9), равноудаленной от проводов на расстояние d = 10 см. Угол b = p/3. 210. Бесконечно длинный провод с током I = 60 А изогнут так, как показано на рис.2.10. Определить магнитную индукцию В в точке А, лежащей на биссектрисе прямого угла на расстоянии d = 10 см от его вершины. 211. Протон, прошедший ускоряющую разность потенциалов U =800 В, влетел в однородное магнитное поле с индукцией В = 0, 06 Тл и начал двигаться по окружности. Найти её радиус. 212. Однозарядный ион прошел ускоряющую разность потенциалов U = 1 кВ и влетел перпендикулярно линиям магнитной индукции в однородное поле (В = 0, 5 Тл). Определить массу m иона, если он описал окружность радиусом R = 4, 37 см.
Рис. 2.1 Рис. 2.2
Рис. 2.5 Рис. 2.6
Рис. 2.7 Рис. 2.8
Рис. 2.9 Рис. 2.10
213. Электрон, ускоренный разностью потенциалов U = 500 В движется параллельно прямолинейно длинному проводу на расстоянии d = 5 мм от него. Найти силу F, действующую на электрон, если по проводу пустить ток I =10 А. 214. Альфа-частица прошла ускоряющую разность потенциалов U = 300 В и, попав в однородное магнитное поле, стала двигаться по винтовой линии радиусом R = 1 см и шагом h = 4 мм. Определить магнитную индукцию В поля. 215. Заряженная частица прошла ускоряющую разность потенциалов U = 100 В и, влетев в однородное магнитное поле (В = 0, 1 Тл), стала двигаться по винтовой линии с шагом h = 6, 5 см и радиусом R = 1 см. Определить отношение заряда частицы к ее массе. 216. Протон и электрон, ускоренные одинаковой разностью потенциалов, влетают в однородное магнитное поле. Во сколько радиус кривизны R1 траектории протона больше радиуса кривизны R2 траектории электрона? 217. Протон прошел ускоряющую разность потенциалов U = 800 В и влетел в однородное магнитное поле (В = 20 мТл) под углом a = 30° к линиям магнитной индукции. Определить шаг h и радиус R винтовой линии, по которой будет двигаться протон в магнитном поле. 218. Альфа-частица, пройдя ускоряющую разность потенциалов U, стала двигаться в однородном магнитном поле (В = 50 мТл) по винтовой линии с шагом h = 5 см и радиусом R = 1 см. Определить ускоряющую разность потенциалов, которую прошла альфа-частица. 219. Заряженная частица со скоростью v =106 м/с влетев в однородное магнитное поле с индукцией В = 0, 3 Тл и стала двигаться по окружности радиусом R = 4 см. Найти заряд Q частицы, если её кинетическая энергия Т = 12 кэВ. 220. Заряженная частица с энергией Т = 1 кэВ движется в однородном магнитном поле по окружности радиусом R = 1, 4 мм. Найти силу F, действующую на частицу со стороны поля.
221. В однородном магнитном поле с индукцией В = 0, 8 Тл находится прямой провод длиной l = 30 cм, концы которого замкнуты вне поля. Сопротивление всей цепи R = 0, 2 Ом. Найти силу, которую нужно приложить к проводу, чтобы перемещать его перпендикулярно линиям индукции со скоростью v = 2, 5 м/с. 222. В однородном магнитном поле с индукцией В = 0, 5 Тл вращается с частотой n = 5 с-1 стержень длиной l = 20 см. Ось вращения параллельна линиям индукции и проходит через один из концов стержня перпендикулярно его оси. Определить разность потенциалов U на концах стержня. 223. Тонкий медный провод массой m = 5 г согнут в виде квадрата, и концы его замкнуты. Квадрат помещен в однородное магнитное поле (В = 0, 2 Тл) так, что плоскость перпендикулярна линиям поля. Определить заряд Q, который потечет по проводнику, если квадрат, потянув за противоположные вершины, вытянуть в линию. 224. Рамка, содержащая N = 200 витков тонкого провода, может свободно вращаться относительно оси, лежащей в плоскости рамки. Площадь рамки S = 50 см2. Ось рамки перпендикулярна линиям индукции магнитного поля (В = 0, 05 Тл). Определить максимальную ЭДС emax, которая индуцируется в рамке при ее вращении с частотой n = 40 с-1. 225. Прямой проводящий стержень длиной l = 40 см находится в однородном магнитном поле (В = 0, 1 Тл). Концы стержня замкнуты гибким проводом, находящимся вне поля. Сопротивление всей цепи R = 0, 5 Ом. Какая мощность Р потребуется для равномерного перемещения стержня перпендикулярно линиям магнитной индукции со скоростью V = 10 м/с? 226. Проволочный контур площадью S = 500 см2 и сопротивлением R = 0, 1 Ом равномерно вращается в однородном магнитном поле (В = 0, 5 Тл). Ось вращения лежит в плоскости кольца и перпендикуляр Популярное:
|
Последнее изменение этой страницы: 2016-07-13; Просмотров: 703; Нарушение авторского права страницы