Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Генеральная и выборочная совокупность. Способы отбора. Статическая функция распределения. Статические оценки параметров распределения.
Определим основные понятия математической статистики. Генеральная совокупность – все множество имеющихся объектов. Выборка – набор объектов, случайно отобранных из генеральной совокупности. Объем генеральной совокупности N и объем выборки n – число объектов в рассматривае-мой совокупности. Виды выборки: Повторная – каждый отобранный объект перед выбором следующего возвращается в генеральную совокупность; Бесповторная – отобранный объект в генеральную совокупность не возвращается. Замечание. Для того, чтобы по исследованию выборки можно было сделать выводы о поведе-нии интересующего нас признака генеральной совокупности, нужно, чтобы выборка правиль-но представляла пропорции генеральной совокупности, то есть была репрезентативной (представительной). Учитывая закон больших чисел, можно утверждать, что это условие выполняется, если каждый объект выбран случайно, причем для любого объекта вероятность попасть в выборку одинакова. Первичная обработка результатов. Пусть интересующая нас случайная величина Х принимает в выборке значение х1 п1 раз, х2 – п2 раз, …, хк – пк раз, причем где п – объем выборки. Тогда наблюдаемые значения случайной величины х1, х2, …, хк называют вариантами, а п1, п2, …, пк – частотами. Если разделить каждую частоту на объем выборки, то получим относительные частоты Последовательность вариант, записанных в порядке возрастания, называют вариационным рядом, а перечень вариант и соответствующих им частот или относительных частот – стати-стическим рядом:
Если исследуется некоторый непрерывный признак, то вариационный ряд может состоять из очень большого количества чисел. В этом случае удобнее использовать группированную выборку. Для ее получения интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько равных частичных интервалов длиной h, а затем находят для каждого частичного интервала ni – сумму частот вариант, попавших в i-й интервал. Составленная по этим результатам таблица называется группированным статистическим рядом:
Распределение функции. Для наглядного представления о поведении исследуемой случайной величины в выборке можно строить различные графики. Один из них – полигон частот: ломаная, отрезки которой соединяют точки с координатами (x1, n1), (x2, n2), …, (xk, nk), где xi откладываются на оси абсцисс, а ni – на оси ординат. Если на оси ординат откладывать не абсолютные (ni), а относительные (wi) частоты, то получим полигон рис.1 относительных частот (рис.1). По аналогии с функцией распределения случайной величины можно задать некоторую функцию, относительную частоту события X < x. Выборочной (эмпирической) функцией распределения называют функцию F*(x), определяющую для каждого значения х относительную частоту события X < x. Таким образом, , (15.1) где пх – число вариант, меньших х, п – объем выборки. Замечание. В отличие от эмпирической функции распределения, найденной опытным путем, функцию распределения F(x) генеральной совокупности называют теоретической функцией распределения. F(x) определяет вероятность события X < x, а F*(x) – его относительную частоту. При достаточно больших п, как следует из теоремы Бернулли, F*(x) стремится по вероятности к F(x). Из определения эмпирической функции распределения видно, что ее свойства совпадают со свойствами F(x), а именно: 1) 0 ≤ F*(x) ≤ 1. 2) F*(x) – неубывающая функция. 3) Если х1 – наименьшая варианта, то F*(x) = 0 при х≤ х1; если хк – наибольшая варианта, то F*(x) = 1 при х > хк. Для непрерывного признака графической иллюстрацией служит гистограмма, то есть ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высотами – отрезки длиной ni /h (гистограмма частот) или wi /h (гистограмма относительных частот). В первом случае площадь гистограммы равна объему выборки, во втором – единице Рис.2.
24. Доверительный интервал для математического ожидания нормального распределения при известном и неизвестном распределении. Коэффициент Стьюдента. Популярное:
|
Последнее изменение этой страницы: 2016-05-30; Просмотров: 859; Нарушение авторского права страницы