![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Закон больших чисел. Предельные теоремы. Неравенство Чебышева. Теоремы Чебышева. Теорема Бернулли.
Изучение статистических закономерностей позволило установить, что при некоторых условиях суммарное поведение большого количества случайных величин почти утрачи-вает случайный характер и становится закономерным (иначе говоря, случайные отклоне-ния от некоторого среднего поведения взаимно погашаются). В частности, если влияние на сумму отдельных слагаемых является равномерно малым, закон распределения суммы приближается к нормальному. Математическая формулировка этого утверждения дается в группе теорем, называемой законом больших чисел. Неравенство Чебышева. Неравенство Чебышева, используемое для доказательства дальнейших теорем, справед-ливо как для непрерывных, так и для дискретных случайных величин. Докажем его для дискретных случайных величин. Неравенство Чебышева. p( | X – M(X)| < ε ) ≥ D(X) / ε ². (13.1) Доказательство. Пусть Х задается рядом распределения
Так как события |X – M(X)| < ε и |X – M(X)| ≥ ε противоположны, то р ( |X – M(X)| < ε ) + + р ( |X – M(X)| ≥ ε ) = 1, следовательно, р ( |X – M(X)| < ε ) = 1 - р ( |X – M(X)| ≥ ε ). Найдем р ( |X – M(X)| ≥ ε ). D(X) = (x1 – M(X))² p1 + (x2 – M(X))² p2 + … + (xn – M(X))² pn. Исключим из этой суммы те слагаемые, для которых |X – M(X)| < ε. При этом сумма может только уменьшиться, так как все входящие в нее слагаемые неотрицательны. Для определенности будем считать, что отброшены первые k слагаемых. Тогда D(X) ≥ (xk+1 – M(X))² pk+1 + (xk+2 – M(X))² pk+2 + … + (xn – M(X))² pn ≥ ε ² (pk+1 + pk+2 + … + pn). Отметим, что pk+1 + pk+2 + … + pn есть вероятность того, что |X – M(X)| ≥ ε, так как это сумма вероятностей всех возможных значений Х, для которых это неравенство справедливо. Следовательно, D(X) ≥ ε ² р(|X – M(X)| ≥ ε ), или р (|X – M(X)| ≥ ε ) ≤ D(X) / ε ². Тогда вероятность противоположного события p( | X – M(X)| < ε ) ≥ D(X) / ε ², что и требо-валось доказать. Теоремы Чебышева и Бернулли. теорема Чебышева. Если Х1, Х2, …, Хп – попарно независимые случайные величины, дисперсии которых равномерно ограничены ( D(Xi) ≤ C), то для сколь угодно малого числа ε вероятность неравенства будет сколь угодно близка к 1, если число случайных величин достаточно велико. Замечание. Иначе говоря, при выполнении этих условий Доказательство. Рассмотрим новую случайную величину
Следствие. Если Х1, Х2, …, Хп – попарно независимые случайные величины с равномерно ограничен-ными дисперсиями, имеющие одинаковое математическое ожидание, равное а, то для любого сколь угодно малого ε > 0 вероятность неравенства Вывод: среднее арифметическое достаточно большого числа случайных величин прини-мает значения, близкие к сумме их математических ожиданий, то есть утрачивает характер случайной величины. Например, если проводится серия измерений какой-либо физической величины, причем: а) результат каждого измерения не зависит от результатов остальных, то есть все результаты представляют собой попарно независимые случайные величины; б) измерения производятся без систематических ошибок (их математические ожидания равны между собой и равны истинному значению а измеряемой величины); в) обеспечена определенная точность измерений, следовательно, дисперсии рассматривае-мых случайных величин равномерно ограничены; то при достаточно большом числе измерений их среднее арифметическое окажется сколь угодно близким к истинному значению измеряемой величины. Теорема Бернулли. теорема Бернулл. Если в каждом из п независимых опытов вероятность р появления события А постоянна, то при достаточно большом числе испытаний вероят-ность того, что модуль отклонения относительной частоты появлений А в п опытах от р будет сколь угодно малым, как угодно близка к 1: Доказательство. Введем случайные величины Х1, Х2, …, Хп, где Xi – число появлений А в i-м опыте. При этом Xi могут принимать только два значения: 1(с вероятностью р) и 0 (с вероятностью q = 1 – p). Кроме того, рассматриваемые случайные величины попарно независимы и их дисперсии равномерно ограничены (так как D(Xi) = pq, p + q = 1, откуда pq ≤ ¼ ). Следовательно, к ним можно применить теорему Чебышева при Mi = p:
Но что и требовалось доказать. Замечание. Из теоремы Бернулли не следует, что Системы случайных величин. Закон распределения вероятностей дискретной двумерной случайной величины. Функции распределения двумерной случайной величины и ее свойства. Двумерная плотность вероятности и ее свойства. Закон распределения дискретной двумерной случайной величины (Х, Y)имеет вид таблицы с двойным входом, задающей перечень возможных значений каждой компоненты и вероятности p(xi, yj), с которыми величина принимает значение (xi, yj):
При этом сумма вероятностей, стоящих во всех клетках таблицы, равна 1. Зная закон распределения двумерной случайной величины, можно найти законы распреде-ления ее составляющих. Действительно, событие Х = х1 представляется собой сумму несовместных событий (X = x1, Y = y1), (X = x1, Y = y2), …, (X = x1, Y = ym), поэтому р(Х = х1) = p(x1, y1) + p(x1, y2) +…+ p(x1, ym) (в правой части находится сумма вероятностей, стоящих в столбце, соответствующем Х = х1). Так же можно найти вероятности остальных возможных значений Х. Для определения вероятностей возможных значений Y нужно сложить вероятности, стоящие в строке таблицы, соответствующей Y = yj. Функцией распределения F(x, y) двумерной случайной величины (X, Y) называется вероятность того, что X < x, a Y < y: F( х, у ) = p ( X < x, Y < y ). (8.1)
1)f(x, y) ≥ 0 (см. предыдущее замечание: вероятность попадания точки в прямоуголь-ник неотрицательна, площадь этого прямоугольника положительна, следовательно, предел их отношения неотрицателен). 2) Популярное:
|
Последнее изменение этой страницы: 2016-05-30; Просмотров: 827; Нарушение авторского права страницы