Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


История создания и развития персональных компьютеров



ЭВМ общего назначения отличаются большими операционными ресурсами, обладают большой емкостью и комплектуются широкой номенклатурой периферийных устройств. Такие ЭВМ часто называются универсальными и используются в крупных вычислительных центрах. Большие ЭВМ общего назначения, выпускаемые фирмой ЭВМ IBM наиболее известны под “именем” майнфрейм (mаinframе)

Проблемно-ориентированные ЭВМ используются для решения ограниченного круга задач, имеющих проблемное применение. Они сравнительно дешевы, просты в эксплуатации и обслуживании и рассчитаны на массовое применение. Наиболее часто подобные ЭВМ используются в составе автоматизированных систем управления технологическими процессами (АСУПТ), в системах автоматизированного проектирования (САПР) и т.п.

Снижение стоимости ЭВМ данного класса достигается за счет разумного уменьшения операционных ресурсов применительно к конкретным проблемным задачам. В качестве машин этого класса используются мини- и микроЭВМ, в том числе персональные компьютеры (ПК).

Специализированные ЭВМ используются для решения узкого круга задач с фиксированными алгоритмами. Такая специализация позволяет увеличить их быстродействие, что весьма важно при управлении объектами в реальном масштабе времени (бортовые системы самолетов, космических кораблей, в автомобилях и т.д.).

Малые ЭВМ

Малые ЭВМ (мини ЭВМ) - надежные, недорогие и удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с мэйнфреймами возможностями

Мини - ЭВМ (и наиболее мощные из них супермини - ЭВМ) обладают следующими характеристиками:
производительность - до 100 МIPS;
емкость основной памяти - 4-512 Мбайт;
емкость дисковой памяти - 2-100 Гбайт;
число поддерживаемых пользователей-16-512.

Все модели мини-ЭВМ разрабатываются на основе микропроцессорных наборов интегральных микросхем, 16-, 32-, 64-разрядных микропроцессоров. Основные их особенности: широкий диапазон производительности в конкретных условиях применения, аппаратная реализация большинства системных функций ввода-вывода информации, простая реализация микропроцессорных и многомашинных систем, высокая скорость обработки прерываний, возможность работы с форматами данных различной длины.

К достоинствам мини-ЭВМ можно отнести: специфичную архитектуру с большой модульностью, лучшее, чем у мэйнфреймов, соотношение производительность/цена, повышенная точность вычислений.

Мини-ЭВМ ориентированы на использование в качестве управляющих вычислительных комплексов. Традиционная для подобных комплексов широкая номенклатура периферийных устройств дополняется блоками межпроцессорной связи, благодаря чему обеспечивается реализация вычислительных систем с изменяемой структурой.

Наряду с использованием для управления технологическими процессами мини-ЭВМ успешно применяются для вычислений в многопользовательских вычислительных системах, в системах автоматизированного проектирования, в системах моделирования несложных объектов, в системах искусственного интеллекта.

Родоначальником современных мини-ЭВМ можно считать компьютеры РDР-11 (Program Driven Processor - программно-управляемый процессор) фирмы DЕС (Digital Equipment Corporation - Корпорация дискретного оборудования, США), они явились прообразом и наших отечественных мини-ЭВМ - Системы Малых ЭВМ (СМ ЭВМ): CM 1, 2, 3, 4, 1400, 1700 и др.

 

ВОПРОС 4

Запоминающее устройство - носитель информации, предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.

Классификация запоминающих устройств

По устойчивости записи и возможности перезаписи ЗУ делятся на:

· постоянные ЗУ (ПЗУ), содержание которых не может быть изменено конечным пользователем (например, DVD-ROM). ПЗУ в рабочем режиме допускает только считывание информации.

· записываемые ЗУ, в которые конечный пользователь может записать информацию только один раз (например, DVD-R).

· многократно перезаписываемые ЗУ (например, DVD-RW).

· оперативные ЗУ (ОЗУ) обеспечивает режим записи, хранения и считывания информации в процессе её обработки.

По типу доступа ЗУ делятся на:

· устройства с последовательным доступом (например, магнитные ленты).

· устройства с произвольным доступом (RAM) (например, оперативная память).

· устройства с прямым доступом (например, жесткие магнитные диски).

· устройства с ассоциативным доступом (специальные устройства, для повышения производительности БД)

По геометрическому исполнению:

· дисковые (магнитные диски, оптические, магнитооптические);

· ленточные (магнитные ленты, перфоленты);

· барабанные (магнитные барабаны);

· карточные (магнитные карты, перфокарты, флэш-карты, и др.)

· печатные платы (карты DRAM).

По физическому принципу:

· перфорационные (перфокарта; перфолента);

· с магнитной записью (ферритовые сердечники, магнитные диски, магнитные ленты, магнитные карты);

· оптические (CD, DVD, HD-DVD, Blu-ray Disc);

· использующие эффекты в полупроводниках (флэш-память) и другие.

По форме записанной информации выделяют аналоговые и цифровые запоминающие устройства.

Постоянное запоминающее устройство

ПЗУ предназначено для хранения постоянной программной и справочной информации. Данные в ПЗУ заносятся при изготовлении. Информацию, хранящуюся в ПЗУ, можно только считывать, но не изменять.

В ПЗУ находятся:

· программа управления работой процессора;

· программа запуска и останова компьютера;

· программы тестирования устройств, проверяющие при каждом включении компьютера правильность работы его блоков;

· программы управления дисплеем, клавиатурой, принтером, внешней памятью;

· информация о том, где на диске находится операционная система.

ПЗУ является энергонезависимой памятью, при отключении питания информация в нем сохраняется.

Оперативное запоминающее устройство

Оперативная память (также оперативное запоминающее устройство, ОЗУ) - предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций (рисунок 19). Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.

 

ОЗУ может изготавливаться как отдельный блок или входить в конструкцию однокристальной ЭВМ или микроконтроллера.

На сегодня наибольшее распространение имеют два вида ОЗУ: SRAM (Static RAM) и DRAM (Dynamic RAM).

SRAM - ОЗУ, собранное на триггерах, называется статическойпамятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти - скорость. Поскольку триггеры собраны навентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи.

DRAM - более экономичный вид памяти. Для хранения разряда (битаили трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов).Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус - конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов необходимо регенерировать через определённый интервал времени - для восстановления. Регенерация выполняется путём считывания заряда (через транзистор). Контроллер памяти периодически приостанавливает все операции с памятью для регенерации её содержимого, что значительно снижает производительность данного вида ОЗУ. Память на конденсаторах получила своё название Dynamic RAM (динамическая память) как раз за то, что разряды в ней хранятся не статически, а «стекают» динамически во времени.

Таким образом, DRAM дешевле SRAM и её плотность выше, что позволяет на том же пространстве кремниевой подложки размещать больше битов, но при этом её быстродействие ниже. SRAM, наоборот, более быстрая память, но зато и дороже. В связи с этим обычную память строят на модулях DRAM, а SRAM используется для построения, например, кэш-памяти в микропроцессорах.

 

Жесткий магнитный диск

Накопитель на жёстких магнитных дисках или НЖМД (англ. Hard (Magnetic) Disk Drive), жёсткий диск - устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

Информация в НЖМД (рисунок 20) записывается на жёсткие (алюминиевые, керамические или стеклянные) пластины, покрытые слоемферромагнитного материала, чаще всего двуокиси хрома. В НЖМД используется от одной до нескольких пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров, а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Основные характеристики жестких дисков:

Интерфейс (англ. interface) - совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил (протокола) обмена. Серийно выпускаемые жёсткие диски могут использовать интерфейсы ATA (он же IDE и PATA), SATA, SCSI, SAS, FireWire, USB, SDIO и Fibre Channel.

Ёмкость (англ. capacity) - количество данных, которые могут храниться накопителем. Ёмкость современных устройств достигает 2000 Гб (2 Тб). В отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину, производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186, 2ГБ.

Физический размер (форм-фактор) (англ. dimension). Почти все современные накопители для персональных компьютеров и серверовимеют ширину либо 3, 5, либо 2, 5 дюйма. Также получили распространение форматы 1, 8 дюйма, 1, 3 дюйма, 1 дюйм и 0, 85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5, 25 дюймов.

Время произвольного доступа (англ. random access time) - время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик - от 2, 5 до 16 мс.

Скорость вращения шпинделя (англ. spindle speed) - количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Надёжность (англ. reliability) - определяется как среднее время наработки на отказ (MTBF).

Количество операций ввода-вывода в секунду - у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./с при последовательном доступе.

Потребление энергии - важный фактор для мобильных устройств.

Уровень шума - шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Сопротивляемость ударам (англ. G-shock rating) - сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate) при последовательном доступе:

- внутренняя зона диска: от 44, 2 до 74, 5 Мб/с;

- внешняя зона диска: от 60, 0 до 111, 4 Мб/с.

Объём буфера - буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных дисках он обычно варьируется от 8 до 64 Мб.

Жёсткий диск состоит из гермозоны и блока электроники.

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя.

Блок головок - пакет рычагов из пружинистой стали (по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла, но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пыльюферромагнетика - окислов железа, марганца и других металлов. Точный состав и технология нанесения держатся в секрете. Большинство бюджетных устройств содержит 1 или 2 пластины, но существуют модели с бо́ льшим числом пластин.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту. При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин. Шпиндельный двигатель жёсткого диска трехфазный, что обеспечивает стабильность вращения магнитных дисков, смонтированных на оси (шпинделе) двигателя. Статор двигателя содержит три обмотки, включенные звездой с отводом посередине, а ротор - постоянный секционный магнит. Для обеспечения малого биения на высоких оборотах в двигателе используютсягидродинамические подшипники.

Устройство позиционирования головок состоит из неподвижной пары сильных неодимовых постоянных магнитов, а также катушки на подвижном блоке головок. Вопреки расхожему мнению, внутри гермозоны нет вакуума. Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом; а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетикасиликагеля, который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления и температуры, а также при прогреве устройства во время работы.

Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр - пылеуловитель.

В ранних жёстких дисках управляющая логика была вынесена наMFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управления шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосныйакселерометр, используемый в качестве датчика удара, трёхосныйакселерометр, используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).

Блок ПЗУ хранит управляющие программы для блоков управления ицифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанногоаналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например, метод PRML (Partial Response Maximum Likelihood - максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

На заключительном этапе сборки устройства поверхности пластинформатируются - на них формируются дорожки и секторы. Конкретный способ определяется производителем и/или стандартом, но, как минимум, на каждую дорожку наносится магнитная метка, обозначающая её начало.

С целью адресации пространства поверхности пластин диска делятся на дорожки - концентрические кольцевые области (рисунок 21). Каждая дорожка делится на равные отрезки - секторы.

 

Цилиндр - совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задает используемую рабочую поверхность (то есть конкретную дорожку из цилиндра), а номер сектора - конкретный сектор на дорожке.

 

При способе адресации CHS сектор адресуется по его физическому положению на диске 3 координатами - номером цилиндра, номером головки и номером сектора

При способе адресации LBA адрес блоков данных на носителе задаётся с помощью логического линейного адреса.

 

Оптические диски

Оптический диск (англ. optical disc) - собирательное название дляносителей информации, выполненных в виде дисков, чтение с которых ведётся с помощью оптического излучения. Диск обычно плоский, его основа сделана из поликарбоната, на который нанесён специальный слой, который и служит для хранения информации. Для считывания информации используется обычно луч лазера, который направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками (питами, от англ. pit - ямка, углубление, рисунок 22) на специальном слое, на основании декодирования этих изменений устройством чтения восстанавливается записанная на диск информация. Информация на диске записывается в виде спиральной дорожки так называемых питов (углублений), выдавленных в поликарбонатной основе. Каждый пит имеет примерно 100 нм в глубину и 500 нм в ширину. Длина пита варьируется от 850 нм до 3, 5 мкм. Промежутки между питами называются лендом. Шаг дорожек в спирали составляет 1, 6 мкм.

 

Существует несколько видов оптических дисков: CD, DVD, Blu-Ray и др. (рисунок 23).

 

CD-ROM (англ. compact disc read-only memory) - разновидностькомпакт-дисков с записанными на них данными, доступными только для чтения. Изначально диск был разработан для хранения аудиозаписей, но впоследствии был доработан для хранения и других цифровых данных. В дальнейшем на базе CD-ROM были разработаны диски как с однократной, так и с многократной перезаписью (CD-R и CD-RW).

 

Диски CD-ROM - популярное и самое дешёвое средство для распространения программного обеспечения, компьютерных игр, мультимедиа и данных. CD-ROM (а позднее и DVD-ROM) стал основным носителем для переноса информации между компьютерами.

Компакт-диск представляет собой поликарбонатную подложку толщиной 1, 2 мм, покрытого тончайшим слоем металла (алюминий, золото, серебро и др.) и защитным слоем лака, на котором обычно наносится графическое представление содержания диска. Принцип считывания через подложку был принят, поскольку позволяет весьма просто и эффективно осуществить защиту информационной структуры и удалить её от внешней поверхности диска. Диаметр пучка на внешней поверхности диска составляет порядка 0, 7 мм, что повышает помехоустойчивость системы к пыли и царапинам. Кроме того, на внешней поверхности имеется кольцевой выступ высотой 0, 2 мм, позволяющий диску, положенному на ровную поверхность, не касаться этой поверхности. В центре диска расположено отверстие диаметром 15 мм. Вес диска без коробки составляет приблизительно 15, 7 гр. Вес диска в обычной коробке приблизительно равен 74 гр.

Компакт-диски имеют в диаметре 12 см и изначально вмещали до 650 Мбайт информации. Однако, начиная приблизительно с 2000 года, всё большее распространение стали получать диски объёмом 700 Мбайт, впоследствии полностью вытеснившие диск объёмом 650 Мбайт. Встречаются и носители объёмом 800 мегабайт и даже больше, однако они могут не читаться на некоторых приводах компакт-дисков. Бывают также 8-сантиметровые диски, на которые вмещается около 140 или 210 Мб данных.

Различают диски только для чтения («алюминиевые»), CD-R - для однократной записи, CD-RW - для многократной записи. Диски последних двух типов предназначены для записи на специальных пишущих приводах.

Дальнейшим развитием CD-ROM-дисков стали диски DVD-ROM.

DVD (англ. Digital Versatile Disc) - цифровой многоцелевой диск -носитель информации, выполненный в виде диска, внешне схожий скомпакт-диском, однако имеющий возможность хранить бо́ льший объём информации за счёт использования лазера с меньшей длиной волны, чем для обычных компакт-дисков.

Blu-ray Disc, BD (англ. blue ray disk) - формат оптического носителя, используемый для записи и хранения цифровых данных, включая видео высокой чёткости с повышенной плотностью. Стандарт Blu-ray был совместно разработан консорциумом BDA.

Blu-ray (буквально «синий-луч») получил своё название от использования для записи и чтения коротковолнового (405 нм) «синего» (технически сине-фиолетового) лазера. Однослойный диск Blu-ray (BD) может хранить 23, 3/25/27 или 33 Гб, двухслойный диск может вместить 46, 6/50/54 или 66 Гб.

Твердотельный накопитель

Твердотельный накопитель (англ. SSD, Solid State Drive, Solid State Disk) - энергонезависимое, перезаписываемое компьютерное запоминающее устройство без движущихся механических частей. Следует различать твердотельные накопители, основанные на использовании энергозависимой (RAM SSD) и энергонезависимой (NAND или Flash SSD) памяти.

Накопители RAM SSD, построенные на использовании энергозависимой памяти (такой же, какая используется в ОЗУперсонального компьютера) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость. Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели - системами резервного и/или оперативного копирования.

Накопители NAND SSD, построенные на использовании энергонезависимой памяти появились относительно недавно, но в связи с гораздо более низкой стоимостью начали уверенное завоевание рынка. До недавнего времени существенно уступали традиционным накопителям в чтении и записи, но компенсировали это (особенно при чтении) высокой скоростью поиска информации (сопоставимой со скоростью оперативной памяти). Сейчас уже выпускаются твердотельные накопители Flash со скоростью чтения и записи, сопоставимой с традиционными, и разработаны модели, существенно их превосходящие. Характеризуются относительно небольшими размерами и низким энергопотреблением. Уже практически полностью завоевали рынок ускорителей баз данных среднего уровня и начинают теснить традиционные диски в мобильных приложениях.

Преимущества по сравнению с жёсткими дисками:

· меньше время загрузки системы;

· отсутствие движущихся частей;

· производительность: скорость чтения и записи до 270 МБ/с;

· низкая потребляемая мощность;

· полное отсутствие шума от движущихся частей и охлаждающих вентиляторов;

· высокая механическая стойкость;

· широкий диапазон рабочих температур;

· практически устойчивое время считывания файлов вне зависимости от их расположения или фрагментации;

· малый размер и вес.

Флеш-память

Флеш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (максимально - около миллиона циклов). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи - намного больше, чем способна выдержатьдискета или CD-RW.

Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна.

Благодаря своей компактности, дешевизне и низкому энергопотреблению флеш-память широко используется в цифровых портативных устройствах (рисунок 24).

 

Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками. В традиционных устройствах с одноуровневыми ячейками, каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

В основе типа флеш-памяти NOR лежит ИЛИ-НЕ элемент (англ.NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Некоторые электроны туннелируют через слой изолятора и попадают на плавающий затвор, где и будут пребывать. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и егопроводимость, что используется при чтении.

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR-архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND-архитектуры.

В основе NAND-типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR-типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND-чипа может быть существенно меньше. Также запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR-архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

Существуют несколько типов карт памяти, используемых в портативных устройствах:

Compact Flash - карты памяти CF являются старейшим стандартом карт флеш-памяти. Первая CF карта была произведена корпорациейSanDisk в 1994 году. Чаще всего в наши дни он применяется в профессиональном фото и видео оборудовании, так как ввиду своих размеров (43× 36× 3, 3 мм) слот расширения для Compact Flash-карт физически проблематично разместить в мобильных телефонах или MP3-плеерах.

Multimedia Card. Карта в формате MMC имеет небольшой размер - 24× 32× 1, 4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.

MMCmicro - миниатюрная карта памяти для мобильных устройств с размерами 14× 12× 1, 1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.

SDCard (Secure Digital Card является дальнейшим развитием стандарта MMC. По размерам и характеристикам карты SD очень похожи на MMC, только чуть толще (32× 24× 2, 1 мм). Основное отличие от MMC - технология защиты авторских прав: карта имеет криптозащиту от несанкционированного копирования, повышенную защиту информации от случайного стирания или разрушения и механический переключатель защиты от записи.

SDHC (SD High Capacity): Старые карты SD (SD 1.0, SD 1.1) и новые SDHC (SD 2.0) (SD High Capacity) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 4 Гб для SD и 32 Гб для SD High Capacity (Высокой Ёмкости). Устройства чтения SDHC обратно совместимы с SD, то есть SD-карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SD карта SDHC не будет читаться вовсе. Оба варианта могут быть представлены в любом из трёх форматов физических размеров (стандартный, mini и micro).

MiniSD (Mini Secure Digital Card): От стандартных карт Secure Digital отличаются меньшими размерами 21, 5× 20× 1, 4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер.

MicroSD (Micro Secure Digital Card): являются на настоящий момент самыми компактными съёмными устройствами флеш-памяти (11× 15× 1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры.

Memory Stick Duo: данный стандарт памяти разрабатывался и поддерживается компанией Sony. Корпус достаточно прочный. На данный момент - это самая дорогая память из всех представленных. Memory Stick Duo был разработан на базе широко распространённого стандарта Memory Stick от той же Sony, отличается малыми размерами (20× 31× 1, 6 мм).

Memory Stick Micro (M2): Данный формат является конкурентом формата microSD (по аналогичному размеру), сохраняя преимущества карт памяти Sony.

xD-Picture Card: используются в цифровых фотоаппаратах фирмOlympus, Fujifilm и некоторых других.

 

ВОПРОС 6

Стековая память

Стековая память является безадресной. Все ячейки памяти организованы по принципу " первым вошел - последним вышел" (LIFO). Реализовано это таким образом, что для операций с памятью доступна только 0-я ячейка.

Каждая операция записи, инициируемая сигналом обращения к памяти, приводит к тому, что записанные данные помещаются в 0 ячейку памяти. При этом все ранние записи в памяти слова автоматически сдвигаются на 1 адрес ниже. Операция чтения, инициируемая сигналом обращения, приводит к тому, что на выходе памяти формируется значение слова, находящиеся в 0 ячейке памяти. При этом все имеющиеся слова сдвигаются на одно слово вверх. Счетчик стека нужен только для контроля заполнения и очищения стека. Техническая реализация стековой памяти оказывается сложнее адресной памяти. Стековая память используется достаточно широко. Чаще всего применяется не стековая память, а адресное поле, которое функционирует по принципу стека.

Ассоциативная память.

Исторически последняя. Является представителем многофункциональных запоминающих устройств (возможна обработка данных без процессора в памяти). Отличительная особенность - поиск любой информации в ЗМ производится не по адресу, а по ассоциативным признакам (признакам опроса). Поиск производится одновременно по всем ячейкам ЗМ.

С точки зрения структуры, любая основная память компьютера может быть построена, как одноблочная, либо как многоблочная (сейчас одноблочная память практически не используется). Многоблочную память строят из однотипных блоков.

Иерархия памяти

В основе реализации иерархии памяти современных компьютеров лежат два принципа: принцип локальности обращений и соотношение стоимость/производительность. Принцип локальности обращений говорит о том, что большинство программ к счастью не выполняют обращений ко всем своим командам и данным равновероятно, а оказывают предпочтение некоторой части своего адресного пространства.

Иерархия памяти современных компьютеров строится на нескольких уровнях, причем более высокий уровень меньше по объему, быстрее и имеет большую стоимость в пересчете на байт, чем более низкий уровень. Уровни иерархии взаимосвязаны: все данные на одном уровне могут быть также найдены на более низком уровне, и все данные на этом более низком уровне могут быть найдены на следующем нижележащем уровне и так далее, пока мы не достигнем основания иерархии.

Иерархия памяти обычно состоит из многих уровней, но в каждый момент времени мы имеем дело только с двумя близлежащими уровнями. Минимальная единица информации, которая может либо присутствовать, либо отсутствовать в двухуровневой иерархии, называется блоком. Размер блока может быть либо фиксированным, либо переменным. Если этот размер зафиксирован, то объем памяти является кратным размеру блока.

Успешное или неуспешное обращение к более высокому уровню называются соответственно попаданием (hit) или промахом (miss). Попадание - есть обращение к объекту в памяти, который найден на более высоком уровне, в то время как промах означает, что он не найден на этом уровне. Доля попаданий (hit rate) или коэффициент попаданий (hit ratio) есть доля обращений, найденных на более высоком уровне. Иногда она представляется процентами. Доля промахов (miss rate) есть доля обращений, которые не найдены на более высоком уровне.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-14; Просмотров: 875; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.074 с.)
Главная | Случайная страница | Обратная связь