Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
I. Иммунология. Определение, задачи, методы. История развитии иммунологии.Стр 1 из 6Следующая ⇒
I. Иммунология. Определение, задачи, методы. История развитии иммунологии. Иммунология — междисциплинарная медицинская наука, изучающая строение, эволюцию и функционирование иммунной системы различных организмов (человека, животных, растений), механизмы и способы защитных реакций, направленных на сохранение их структурной и фунциональной целостности и биологической индивидуальности. Иммунология выделилась в самостоятельную науку более 100 лет тому назад. Не основоположниками являются французский химик Луи Пастср, положивший начало вакцинопрофилактике инфекционных заболеваний с помощью живых вакцин; русский биолог Илья Мечников -сформулировавший основы фагоцитарной теории (клеточного иммунитета); немецкий химик Пауль Эрлих и немецкий врач Робет Кох. За короткую историю иммунология выросла в самостоятельную отрасль с самостоятельными институтами, журналами, национальными и международными обществами. В настоящее время выделяют общую и частную (прикладную) иммунологию. Общая, или фундаментальная, иммунология подразделяется на молекулярную иммунологию, клеточную иммунологию, иммуногенетику, иммунотолерантность, иммунохимию, иммунокиберпетнку, эволюционную иммунологию, физикохимическую иммунологию. Она изучает структуру и функцию молекул, клеток и органов иммунной системы. функционирование последней как единой гомеостатической. самоуправляемой системы, а также ее связи с другими системами — нервной, эндокринной и тд. Важными направлениями частной иммунологии являются иммунопрофилактика, инфекционная иммунология, иммунопатология, иммунобиотехнология. трансплантационная иммунология, иммунология репродукции, клиническая, ветеринарная, экологическая и трансгенная иммунология, иммуногенотерапия. Ее основная цель - изучение патогенеза иммунозависимых заболеваний, разработка на основе теоретических подходов иммунобиологических профилактических и терапевтических препаратов (вакцин, иммуноглобулинов, цитокинов и их смесей — коктейлей, рецепторов и др.). Основные задачами: изучение строения, функции и развития иммунной системы при патологии и в норме: изучение роли иммунной системы в возникновении и развитии инфекционных и неинфекционных болезней; разработка и использование методов иммунодиагностики, иммунопрофилактики и иммунотерапии инфекционных и неинфекцнонных заболеваний человека. Meтоды иммунологии: иммуноморфологический; иммунохимический: иммуиобиологический, экспериментальный.
Иммунная система организма. Характеристика. Органы, иммунокомпетентные клетки. Иммунная система людей и животных обеспечивает специфическую защиту организма от генетически чужеродных молекул и клеток, в том числе от всевозможных инфекционных агентов — бактерий, вирусов, грибов и простейших. Клетки и молекулы иммунной системы обладают способностью распознавать чужеродные антигены инфекционных агентов, отличать их от антигенов собственных клеток и биополимеров, что в конечном итоге приводит к их уничтожению или удалению, т. е. к сохранению постоянства внутренней среды организма. Иммунная система обладает «памятью», которая позволяет быстро и эффективно удалять повреждающий чужеродный агент при повторном его распознавании. В то же время наличие естественной иммунологической толерантности к собственным антигенам предотвращает развитие самоповреждающих иммунологических реакций. Понятием «иммунная система» подчеркивается единство разных органов и клеток, связанных общностью происхождения, функциональным взаимодействием и общими механизмами регуляции.
К центральным органам иммунной системы человека относятся костный мозг и тимус (вилочковая железа), в которых происходят пролиферация и дифференцировка иммунокомпетентных клеток: Т- и В-лимфоцитов Вилочковая железа (тимус). Предшественники Т-лимфоцитов образуются из стволовых клеток костного мозга, которые поступают в тимус. В корковом слое тимуса происходит образование малых лимфоцитов (тимоцитов), которые активно размножаются. Кортикальные лимфоциты являются незрелыми клетками. Под влиянием гормонов тимуса и факторов микроокружения они дифференцируются в зрелые Т-лимфоциты, мигрируя в мозговой слой тимуса, а затем в кровь. Лимфоидная паренхима тимуса достигает максимального развития к 17 годам, а затем уменьшается, но полностью не исчезает. Костный мозг. В костном мозге содержатся стволовые кроветворные клетки, являющиеся родоначальниками всех форменных элементов крови, в том числе лимфоцитов. В ретикулярной строме костного мозга происходит дифференцировка В-лимфоцитов, которые созревают до малых лимфоцитов из клеток-предшественников. Периферические лимфоидные органы. К ним относятся многочисленные скопления лимфоидной ткани, располагающиеся под слизистыми оболочками желудочно-кишечного, дыхательного и мочеполового трактов (групповые лимфатические фолликулы, миндалины и др.), лимфатические узлы и селезенка. В периферических лимфоидных органах происходят пролиферация и дифференцировка лимфоцитов под влиянием антигена, поступившего в организм. В лимфатических узлах, селезенке, миндалинах, групповых лимфатических фолликулах имеются две зоны. Одна из них называется тимусзависимой, поскольку там расселяются Т-лимфоциты, другая В-зависимой, в которой располагаются В-лимфо-циты. В этих зонах происходят антигензависимая пролиферация и дифференцировка данных клеток и их кооперация. Молекулы иммунной системы - CD-антигены, рецепторы, молекулы I, II, III классов ГКГС, адгезины, суперсемейство иммуноглобулинов. Установлено, что на поверхности клеток имеются дифференцировочные антигены, разные не только у разных типов клеток, но и у одного типа клеток на разных стадиях дифференцировки. Клеточные поверхностные молекулы, идентифицированные с помощью моноклональных антител, известны как " Claster of differentiation" - кластер дифференцировки, и эти антигены имеют числовую нумерацию: CD3, CD4, CD8, CD20, CD56 и т.д. Антигены главного комплекса гистосовместимости (МНС). МНС у человека называются HLA. Антигены МНС I класса имеют все ядросодержащие клетки, а МНС II класса - только антигенпрезентирующие клетки. Антигены МНС I и II классов участвуют в презентации (представлении) клетками антигенного пептида Т-лимфоцитам: продукты МНС I класса презентируют (представляют) антигенный пептид CD8+ Т-лимфоцитам, а МНС II класса CD4+ Т-лимфоцитам. Имеются неклассические молекулы МНС, или МНС-подобные (например, CD1). Выявлено участие растворимых молекул I класса в различных этапах иммунного ответа: а) связывании антиНLАантител; б) ингибиции цитотоксичности аутореактивных Т-лимфоцитов; с) формировании иммунологической толерантности. Молекулы II класса распознавания являются продуктами DR, DQ и DP генов, гетеродимеры тяжелой (а) и легкой (в) гликопротеидных цепей. Молекулярная масса альфа цепи 30-34 кДа, а бeта - 26-29 кДа. Внеклеточная часть молекулы представлена al и а2, или в1 и в2 и соединена небольшой трансиенбранной областью (30 аминокислот) и коротким цитоплазматическин доменом (15 аминокислот). Они экспрессированы преимущественно на мембране иммунокомпетентных клеток. Антигены МНС I класса имеют все ядросодержащие клетки, а МНС II класса - только антигенпрезентирующие клетки. Антигены МНС I и II классов участвуют в презентации (представлении) клетками антигенного пептида Т-лимфоцитам: продукты МНС I класса презентируют (представляют) антигенный пептид CD8+ Т-лимфоцитам, а МНС II класса CD4+ Т-лимфоцитам. Фагоцитоз. Фагоциты. Стадии фагоцитоза. Механизмы внутриклеточной бактерицидное действие. Исходы (завершённый, незавершенный фагоцитоз). Хемотаксины, опсонины, происхождение и роль в противоинфекционном иммунитете. Фагоцитоз - поглощение фагоцитом крупных макромолекулярных комплексов, бактерий. Клетки-фагоциты нейтрофилы и моноциты/макрофаги. Фагоцитировать могут также эозинофилы (наиболее эффективны при антительминтном иммунитете). Процесс фагоцитоза усиливают, обволакивающие объект фагоцитоза. Опсонины - белки, усиливающие фагоцитоз: IgG, белки острой фазы (С-реакгивный протеин, маннансвязывающий лектин); липополисахаридсвязывающий протеин, компоненты комплемента -СЗЬ, С4Ь; сурфактантные протеины легких SP-A, SP-D. Моноциты составляют 5-10 %, а нейтрофилы 60-70 % лейкоцитов крови. Поступая в ткань моноциты формируют популяцию тканевых макрофагов: купферовские клетки (или звездчатые ретикулоэндотелиоциты печени), микроглия ЦНС, остеокласты костной ткани, альвеолярные и интерстициальные макрофаги. Фагоциты направленно перемещаются к объекту фагоцитоза, реагируя на хемоатграктанты: вещества микробов, активированные компоненты комплемемента (С5а, СЗа) и цитокины. Плазмалемма фагоцита обхватывает бактерии или другие корпускулы и собственные поврежденные клетки. Затем объект фагоцитоза окружается плазмалеммой и мембранная везикула (фагосома), погружается в цитоплазму фагоцита. Мембрана фагосомы сливается с лизосомой, рН закисляется до 4, 5; активируются ферменты лизосомы. Фагоцитированный микроб разрушается под действием ферментов лизосом, катионных белков дефензинов, катепсина G, лизоцима и др. факторов. При окислительном (дыхательном) взрыве в фагоците образуются токсичные антимикробные формы кислорода - перекись водорода Н202, супероксиданион 02-, гидроксильный радикал ОН-, синглетный кислород. Кроме этого антимикробным действием обладают окись азота и радикал NO-. Макрофаги выполняют защитную функцию еще до взаимодействия с другими иммунокомпетентными клетками (неспецифическая резистентность). Активация макрофага происходит после разрушения фагоцитируемого микроба, его процессинга (переработки) и презентации (представлении) антигена Т-лимфоцитам. Фагоцитоз может быть завершенным, завершающимся гибелью захваченного микроба, и незавершенным, при котором микробы не погибают. Примером незавершенного фагоцитоза является фагоцитоз гонококков, туберкулезных палочек и лейшманий. 9. Методы определения показателей фагоцитоза. ИССЛЕДОВАНИЕ ФАГОЦИТАРНЫХ КЛЕТОК Изучение фагоцитарных клеток осуществляется несколькими методами: А. Прямым морфологическим методом. Микробы смешиваются с фагоцитами в пробирке или в организме лабораторных животных, через 15—120 минут из смеси приготавливаются микропрепараты на предметных стеклах, окрашиваются по Романовскому-Гимзе и подсчитываются число фагоцитирующих фагоцитов и число фагоцитированных микробов. По ним производят расчет следующих показателей: ФАГОЦИТАРНЫЙ ПОКАЗАТЕЛЕЛЬ = 100%*(число фагоцитирующих фагоцитов/общее число фагоцитов) ФАГОЦИТАРНОЕ ЧИСЛО= (число фагоцитированных микробов/число активных фагоцитов) ПОКАЗАТЕЛЬ ЗАВЕРШЕННОСТИ ФАГОЦИТОЗА= (ФЧ(через 15мин)-ФЧ(через 120мин))/ФЧ(через15мин)*100% Б. Непрямыми методами Они основаны на определении функциональной активности различных стадий фагоцитарного процесса: определение хемотаксического индекса позволяет установить способность фагоцитов к направленному передвижению в сторону хемоаттрактанта -активированного комплемента, экстракта микробов, казеината натрия и др. Подсчитывается отношение количества фагоцитов, проникающих через микропористые фильтры в опыте и в контроле; аттракция фагоцитирующегося объекта к поверхности фагоцита определяется по изменению степени метаболизма фагоцита, которая суммарно определяется в тесте хемилюминесценцищбактерицидность, фагоцитов определяется по активности бактерицидных систем, заключенных в гранулах клеток: перекиси водорода - пероксидазы, супероксидных ионов -супероксиддесмутазы, лизоцима и др. Переваривающая способность фагоцитов оценивается по активности лизосомальных ферментов, кислой и щелочной фосфатаз, катепсина и др. Серологический метод исследования. Задачи, этапы, оценка. Титр сыворотки, диагностический титр. Диагностикумы, диагностические сыворотки, применение. Характеристика серологического метода исследования Серологическим называют метод исследования, в основе которого лежит реакция специфического взаимодействия антигенов и антител. На основе ее специфичности возможно определение неизвестных антител при взаимодействии с известным антигеном или неизвестного антигена по связыванию с известным антителом. Метод решает следующие задачи: I. Серологическая диагностика инфекционных и иммунных заболеваний, основанная на обнаружении в сыворотке крови больных антител. Обоснованием для постановки диагноза является: а) обнаружение антител к возбудителю болезни ц диагностическом титое. т.е. в таком разведении сыворотки, в котором реакция может бытьположительна только у больных и отрицательна у здоровых; б) нарастание титра антител при повторном исследовании в динамикеболезни, что позволяет отличить заболевание от поствакцинального илипостинфекционного иммунитета. 2/Серологическая диагностика инфекционных заболеваний, основанная на обнаружении в биологических жидкостях или тканях антигенов патогенных микробов. 3. Серологическая идентификация неизвестных микробов, выделенных при бактериологическом методе диагностики инфекционных болезней. Обоснованием для отнесения микроба к определенной серофуппе, сёроварианту или виду является: а) взаимодействие микроба с адсорбированной моноспецифической сывороткой, содержащей антитела только к-специфическим для микроба антигенам (из таких сывороток в процессе их производства сорбируются антитела к групповым антигенам); б) взаимодействие микроба с моноклональными антителами, полученными методом гибридомной техники, т.е. метода культивирования гибрада из плазматической клетки, синтезирующей антитела одной специфичности, с опухолевой клеткой, способной к длительному размножению в культуре; в) взаимодействие микроба с диагностической сывороткой в разведении, составляющем не менее половины титра этой сыворотки. Определение активности поствакцинального или постинфекционного индивидуального или коллективного иммунитета. Получение и определение титров иммунных диагностических, лечебных и профилактических сывороток, поли- и гамма-глобулинов. Терминология. Диагностическая сыворотка - иммунная сыворотка, содержащая антитела известной специфичностити в известном титре, и предназначенная для серологической идентификации микроба или для обнаружения антигенов в организме больного, Диагностикум - взвесь известных микробов или антигенов, предназначенных для серологической диагностики заболеваний по обнаружениюантител в сыворотке больного. Серологический метод исследования включает ряд реакций: агглютинации, преципитации, связывания комплемента, иммунофлюоресценции, иммуиоферментного и радиоиммунологического анализа. ОЦЕНКА МЕТОДА Достоинства: высокая специфичность, относительная простота, доступность, безопасность, быстрота (от 10 мин. до 4 часов) получения результатов. Недостатки: при острых инфекционных заболеваниях обнаружение антител часто бывает ретроспективным диагнозом, т.к. они появляются в достаточных титрах к 7-8 дню от начала болезни, и к этому сроку болезнь может закончиться. I. Экзоаллергены По механизму проникновения: 1.Контактный 2.Игаляторный 3.Алиментарный 4.Парентеральный
По происхождению 1.Бытовые 2.Эпидермальные 3.Пыльцевые 4.Химические в-ва 5.Лекарственные 6.Пищевые 7.Микробные
II. Эндоаллергены Характеристика.
I. Иммунология. Определение, задачи, методы. История развитии иммунологии. Иммунология — междисциплинарная медицинская наука, изучающая строение, эволюцию и функционирование иммунной системы различных организмов (человека, животных, растений), механизмы и способы защитных реакций, направленных на сохранение их структурной и фунциональной целостности и биологической индивидуальности. Иммунология выделилась в самостоятельную науку более 100 лет тому назад. Не основоположниками являются французский химик Луи Пастср, положивший начало вакцинопрофилактике инфекционных заболеваний с помощью живых вакцин; русский биолог Илья Мечников -сформулировавший основы фагоцитарной теории (клеточного иммунитета); немецкий химик Пауль Эрлих и немецкий врач Робет Кох. За короткую историю иммунология выросла в самостоятельную отрасль с самостоятельными институтами, журналами, национальными и международными обществами. В настоящее время выделяют общую и частную (прикладную) иммунологию. Общая, или фундаментальная, иммунология подразделяется на молекулярную иммунологию, клеточную иммунологию, иммуногенетику, иммунотолерантность, иммунохимию, иммунокиберпетнку, эволюционную иммунологию, физикохимическую иммунологию. Она изучает структуру и функцию молекул, клеток и органов иммунной системы. функционирование последней как единой гомеостатической. самоуправляемой системы, а также ее связи с другими системами — нервной, эндокринной и тд. Важными направлениями частной иммунологии являются иммунопрофилактика, инфекционная иммунология, иммунопатология, иммунобиотехнология. трансплантационная иммунология, иммунология репродукции, клиническая, ветеринарная, экологическая и трансгенная иммунология, иммуногенотерапия. Ее основная цель - изучение патогенеза иммунозависимых заболеваний, разработка на основе теоретических подходов иммунобиологических профилактических и терапевтических препаратов (вакцин, иммуноглобулинов, цитокинов и их смесей — коктейлей, рецепторов и др.). Основные задачами: изучение строения, функции и развития иммунной системы при патологии и в норме: изучение роли иммунной системы в возникновении и развитии инфекционных и неинфекционных болезней; разработка и использование методов иммунодиагностики, иммунопрофилактики и иммунотерапии инфекционных и неинфекцнонных заболеваний человека. Meтоды иммунологии: иммуноморфологический; иммунохимический: иммуиобиологический, экспериментальный.
Популярное:
|
Последнее изменение этой страницы: 2016-07-14; Просмотров: 1756; Нарушение авторского права страницы