Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Тема 2. ОБОБЩАЮЩИЕ ХАРАКТЕРИСТИКИ СОВОКУПНОСТЕЙ



Анализ статистических совокупностей включает в себя: построение рядов распределения; графическое представление распределения; определение характеристик центра распределения, показателей вариации.

Рядами распределения называют числовые ряды, характеризующие структуру совокупности по некоторому признаку. Ряд распределения может быть получен в результате структурной группировки. Ряд распределения, образованный по количественному признаку (он называется вариационным рядом), может быть дискретным, если значения признака выражены целыми числами и каждая варианта представлена в вариационном ряде отдельной группой, или интервальным (непрерывным), если значения признака выражены вещественными числами или число вариант признака достаточно велико.

Ряд распределения состоит из следующих элементов:

варианта — отдельное, возможное значение признака i=1, 2, ..., n, где n — число значений признака;

частоты — численность отдельных групп соответствующих значений признаков;

N объём совокупности — общее число элементов совокупности;

частость - доля отдельных групп во всей совокупности;

— величина интервала.

Если вариационный ряд представлен неравными интервалами, то рассчитывается абсолютная и относительная плотности распределения.

Абсолютная плотность h — это отношение частоты к величине интервала, а относительная плотность — это отношение частости к величине интервала:

.

Полученный вариационный ряд оформляется в виде таблицы, где в первой графе указываются варианты (интервалы) значений признака, а в следующих графах частота, частость, или, если необходимо, абсолютная или относительная плотность распределения.

Ряд распределения по частоте (частости) в целом характеризует структуру совокупности по данному признаку. Однако для описания распределения совокупности могут использоваться и кумулятивные ряды, т.е. ряды накопленных частот (или частостей), которые иногда имеют даже некоторые преимущества.

Накопленная частота (частость) данного значения признака —это число (доля) элементов совокупности, индивидуальные значения признака которых не превышают данного.

Обозначим: F(x) — накопленная частота для данного значения х;

G(x) — накопленная частость для данного значения х.

Эти характеристики обладают следующими свойствами:

.

Рассмотрим интервалы :

.

Первым этапом изучения вариационного ряда является его графическое изображение. Способы построения графиков для разных видов рядов распределения различны.

Изображением дискретного ряда распределения является полигон . В системе координат по оси абсцисс откладываются варианты , по оси ординат — частоты (частости), затем отмечают точки с координатами , которые последовательно соединяются отрезками прямой.

Интервальный ряд распределения изображается графически в виде гистограммы. При её построении на оси абсцисс откладывают интервалы ряда. Над осью абсцисс строятся прямоугольники, основанием которых является интервал, а высота — соответствующая этому интервалу плотность распределения (или частота, частость — если ряд равноинтервальный).

Изображением ряда накопленных частот служит кумулята . Накопленные частоты наносятся в системе координат в виде ординат для границ интервалов; соединяя нанесенные точки отрезками прямых, получаем кумуляту.

Вторым этапом изучения вариационного ряда является определение характеристик центра распределения. Характеристика центра распределения представляет собой такую величину, которая в некотором отношении характерна для данного распределения и является его центральной величиной.

К характеристикам центра распределения относятся: средняя арифметическая, медиана, мода.

Для сгруппированных данных, представленных в вариационном ряду, средняя арифметическая определяется как:

,

т.е. в качестве веса при усреднении берётся частота , соответствующая групповым значениям . Если ряд дискретный, то каждое значение признака представлено. Если же ряд интервальный, то его нужно превратить в условно дискретный: в качестве группового значения , для каждого интервала вычисляется его середина.

Медиана - это такое значение признака, которое делит объём совокупности пополам в том смысле, что число элементов совокупности с индивидуальными значениями признака, меньшими медианы, равно числу элементов совокупности с индивидуальными значениями больше медианы.

Численное значение медианы можно определить по ряду накопленных частот. Накопленная частота для равна половине объёма совокупности ; имея ряд накопленных частот, можно вычислить, при каком значении признака накопленная частота равна половине объёма совокупности. Для интервального ряда в этом случае определяется только интервал, в котором будет находиться , само значение приближённо можно определить как:

,

где — начало интервала, содержащего медиану;

— величина интервала, содержащего медиану;

— накопленная частота на начало интервала, содержащего медиану;

N — объём совокупности;

— частота того интервала, в котором расположена медиана.

Мода — наиболее часто встречающееся значение признака в совокупности.

Для дискретного ряда — это то значение, которому соответствует наибольшая частота распределения. Для интервального ряда в начале определяется интервал, содержащий моду, - тот, которому соответствует наибольшая плотность распределения. Затем приближённо определяется численное значение моды.

Если ряд равноинтервальный, то используется формула:

;

где — начало интервала, содержащего моду;

— величина интервала, содержащего моду;

— частота того интервала, в котором расположена мода;

— частота интервала, предшествующего модальному;

— частота интервала, следующего за модальным.

Средняя величина характеризует только уровень, закономерный для данной совокупности, В ряде случаев одно и то же численное значение средней может характеризовать совершенно различные совокупности. Поэтому для того чтобы судить о типичности средней величины для данной совокупности, её следует дополнить показателями, характеризующими вариацию (колеблемость) признака. Наиболее распространёнными из них являются дисперсия, среднее квадратичное отклонение, коэффициент вариации.

Дисперсия — это среднее из квадратов отклонений от средней величины, для вариационного ряда она определяется по формуле:

.

Если ряд интервальный, то в качестве варианты , также как при расчете средней, берется середина интервала.

При использовании калькулятора, а также для дискретных рядов распределения более удобной может быть другая формула вычисления дисперсии:

Наиболее широко в статистике применяется такой показатель вариации, как среднее квадратичное отклонение , который представляет собой квадратный корень из дисперсии.

Относительным показателем колеблемости признака в данной совокупности, является коэффициент вариации (V):

.

Коэффициент вариации позволяет сравнивать вариации различных признаков, а также одноименных признаков в разных совокупностях.

 

 

Задание № 2

На основе структурной группировки построить вариационные частотные и кумулятивные ряды распределения, оформить в таблицы, изобразить графически.

Проанализировать вариационные ряды распределения, вычислив для каждого из них:

¨ среднее арифметическое значение признака;

¨ медиану и моду;

¨ среднее квадратичное отклонение;

¨ коэффициент вариации.

3. Сделать выводы.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 419; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.024 с.)
Главная | Случайная страница | Обратная связь