Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Пассиваторы, активаторы и ингибиторы коррозии



Пассивность и другие анодные эффекты. Термин " пассивность" (пассивирование) был первоначально использован по отношению к коррозионной стойкости железа, погруженного в концентрированный раствор азотной кислоты. Однако это более общее явление, так как в определенных условиях многие металлы находятся в пассивном состоянии. Феномен пассивности был объяснен в 1836 Фарадеем, который показал, что ее причиной является чрезвычайно тонкая оксидная пленка, образующаяся в результате химических реакций на поверхности металла. Такая пленка может восстанавливаться (изменяться химически), и металл вновь становится активным при контакте с металлом, имеющим более отрицательный потенциал, например, железо в соседстве с цинком. При этом образуется гальваническая пара, в которой пассивный металл является катодом. Водород, выделяющийся на катоде, восстанавливает его защитную оксидную пленку. Оксидные пленки на алюминии защищают его от коррозии, и потому анодированный алюминий, получающийся в результате анодного окислительного процесса, используется как в декоративных целях, так и в быту. В широком химическом смысле все анодные процессы, протекающие на металле, являются окислительными, однако термин " анодное окисление" подразумевает целенаправленное образование значительного количества твердого оксида. Пленка определенной толщины образуется на алюминии, являющемся анодом в ячейке, электролитом которой служит серная или фосфорная кислота. Во многих патентах описаны различные модификации этого процесса. Первоначально анодированная поверхность имеет пористую структуру и может быть окрашена в любой желаемый цвет. Введение в электролит бихромата калия дает яркий оранжево-желтый оттенок, в то время как гексацианоферрат(II) калия, перманганат свинца и сульфид кобальта окрашивают пленки в голубой, красно-коричневый и черный цвета соответственно. Во многих случаях применяются водорастворимые органические красители, и это придает металлический глянец окрашенной поверхности. Образующийся слой необходимо закрепить, для чего достаточно обработать поверхность кипящей водой, хотя используются и кипящие растворы ацетатов никеля или кобальта.

При электрохимической коррозии образующиеся продукты часто растворяются (переходят в раствор) и не препятствуют дальнейшему разрушению металла; в некоторых случаях в раствор можно добавить химическое соединение (ингибитор), которое реагирует с первичными продуктами коррозии с образованием нерастворимых и обладающих протекторными свойствами соединений, которые осаждаются на аноде или на катоде. Например, железо легко корродирует в разбавленном растворе обычной соли (NaCl), однако при добавлении сульфата цинка в раствор образуется малорастворимый гидроксид цинка на катоде, а при добавлении фосфата натрия - нерастворимый фосфат железа на аноде (примеры катодных и анодных ингибиторов соответственно). Такие методы защиты можно применять только в тех случаях, когда конструкция целиком или частично погружена в жидкую коррозионную среду. Для уменьшения скорости коррозии часто используют катодную защиту. В этом методе на систему накладывается электрическое напряжение таким образом, чтобы вся защищаемая конструкция была катодом. Это осуществляется подключением конструкции к одному полюсу выпрямителя или генератора постоянного тока, в то время как к другому полюсу подключается внешний химически инертный анод, такой, как графит. Например, в случае защиты от коррозии трубопроводов нерастворимый анод зарывается в землю вблизи от них. В некоторых случаях для этих целей используются дополнительные защитные аноды, например, подвешенные внутри емкостей для хранения воды, причем вода в емкости выполняет роль электролита. В других методах катодной защиты обеспечивается достаточный ток, протекающий от какого-либо иного источника через конструкцию, которая полностью становится катодом и содержит возможные локальные аноды и катоды при одном и том же потенциале. Для этого к защищаемому металлу подсоединяют металл с более отрицательным потенциалом, который в образуемой гальванической паре играет роль протекторного анода и разрушается первым. Протекторные аноды из цинка применялись уже с 1825, когда знаменитый английский химик Х.Дэви предложил использовать их для защиты медной обшивки деревянных корпусов кораблей. Аноды на основе магниевых сплавов широко используются для защиты корпусов современных кораблей от коррозии в морской воде. Протекторные аноды чаще применяются по сравнению с анодами, связанными с внешними источниками тока, поскольку они не требуют энергозатрат. Окрашивание поверхности также используется для защиты от коррозии, особенно если конструкция не полностью погружена в жидкость. Металлические покрытия можно наносить путем напыления металлов или при помощи гальванотехники (например, хромирование, цинкование, никелирование).

Пассивация металлов.

Известно, что серная кислота взаимодействует с железом в соответствии с уравнением

Fe + H2SO4 = FeSO4 + H2

Несколько иначе идет реакция железа с HNO3:

Fe + 4HNO3 = Fe(NO3)3 + NO + 2H2O

Вероятно, многие обратили внимание на то, что серную и азотную кислоты перевозят по железной дороге в стальных цистернах. Об этом свидетельствуют надписи, например «Осторожно, серная кислота». Как это согласуется с теми знаниями, которые отражены в школьных учебниках? Все дело в том, что по железной дороге перевозят не разбавленные, а концентрированные кислоты. Оказывается, что в отличие от разбавленных концентрированная серная, так же как и концентрированная азотная кислоты, не взаимодействует с железом. Правильнее сказать, что кратковременное взаимодействие происходит, но оно быстро прекращается. Специалисты говорят, что в крепких растворах этих кислот железо пассивируется. Еще в 1836 г. знаменитый английский химик М. Фарадей высказал предположение, что причиной пассивации является образование на поверхности металла плотной оксидной пленки. В свое время на это предположение не обратили должного внимания. Лишь через 100 лет эти взгляды возродил и развил известный русский ученый В.А. Кистяковский. После него этот взгляд на пассивацию оформился в виде теории. Согласно ей при пассивации на поверхности металла образуется сплошная и плотная оксидная (реже хлоридная, сульфатная, фосфатная) пленка толщиной в несколько десятков нанометров. Например, на поверхности железа образуется оксидная пленка нестехиометрического состава Fe8O11, Fe3O4.

Имеется и другой взгляд на причину пассивации металлов, согласно которому она обусловлена слоем адсорбированного кислорода или какого-либо другого окислителя. Считают, что при адсорбции происходит насыщение валентности поверхностных атомов металла, что и приводит к снижению его химической активности.

Первая теория наиболее распространена, хотя не исключено, что в разных случаях процессы пассивации согласуются то с одной, а то с другой теорией.

Металлы можно перевести в пассивное состояние не только под действием окислителей, но и электрохимически, подав на них положительный потенциал.

Способность металлов пассивироваться широко используют для их защиты от коррозии. Например, известно, что хранение лезвий безопасных бритв в растворах солей хромовых кислот позволяет дольше сохранять их острыми. В ином случае под действием влажного воздуха железо, особенно на острие лезвия, окисляется и покрывается рыхлым слоем ржавчины.

Пассивируя металл, т.е. создавая оксидные или солевые пленки, можно проводить окраску или тонирование металлов. Толщина таких пленок соизмерима с длиной волны видимого света, поэтому цвет тонированной поверхности зависит от толщины покрытия и цвета металла. Для химического оксидирования с целью окраски широко используют персульфатный раствор, а для электрохимического – изделие делают анодом. В последнем случае говорят, что окрашивание проводят путем анодирования. Тонированию чаще всего подвергают изделия из меди и ее сплавов, а также из алюминия, олова, никеля.

Тонирование может также обусловливаться сульфидной пленкой. Приводим распространенный состав тонирующего раствора: CuSO4 (10...12 г/л), Pb(NO3)2 (10...12 г/л), Na2S2O3 (100...180 г/л), сегнетова соль (15...20 г/л). Тонирование изделий при комнатной температуре в этом растворе позволяет получить следующую цветовую гамму: желтый (5 мин), коричневый (7 мин), красный (10 мин), фиолетовый (13 мин), синий (17 мин), зеленый (20 мин). Электрохимический метод тонирования отличается более широкой цветовой гаммой и лучшей воспроизводимостью цветов по сравнению с химическим.

Издавна известен процесс воронения и синения сталей. По существу, это термический способ их оксидирования. Его проводят на воздухе при температуре 350...360°C. Поверхность изделий предварительно покрывают тонким слоем 15...20%-ного раствора асфальтового лака в бензине и подсушивают на воздухе. Такой же эффект может быть получен при оксидирующей обработке изделий в кипящем растворе щелочи в присутствии нитратов и нитритов щелочных металлов.

К сказанному можно добавить, что оксидирование металлов в промышленных масштабах осуществляют не только для их противокоррозионной защиты и декорировки изделий, но и для придания электроизоляционных свойств поверхностному слою и увеличению коэффициента отражения зеркал. Оксидный слой также используют в качестве грунта под окраску и лакировку.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 429; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь