Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Видеоадаптер сегодня и завтра



Введение

В 1965 году, на заре компьютерной эры, Гордон Мур вывел закон, по которому число транзисторов в интегральных схемах, а, следовательно, и производительность микропроцессоров будут удваиваться примерно каждые два года. Казавшееся современникам почти нереальным, предсказание оправдывается с завидным постоянством, а для некоторых специфических компонентов компьютеров, например видеоадаптеров, перевыполняется: их производительность при обработке реалистичных трехмерных изображений за год даже утраивается. Именно за это время разработчики специализированных процессоров, ориентированных на обработку и ускорение трехмерной графики, успевают создать и выпустить продукты нового поколения.

По данным исследовательской фирмы Jon Peddie Associates, общее количество проданных в 1998 году видеоадаптеров с ускорением трехмерной графики (доля “чистых” ускорителей двухмерной графики стремительно снижается) составит 70 млн. штук. Конкуренция на этом рынке очень высока, особенно в секторе изделий младшего и среднего класса, где стоимость видеоплат обычно не превышает 300 долл. О таких продуктах, используемых в них технологиях, а также преимуществах, которые они дают пользователям, и пойдет речь в данном обзоре.

За последние полтора года рынок графических адаптеров претерпел существенные изменения, в числе которых стоит отметить выделение домашних видеоадаптеров в самостоятельный сегмент. По возможностям и цене домашние видеоадаптеры занимают промежуточное положение между офисными, оптимизированными для работы в оконной среде с нетребовательными к графике приложениями (текстовыми редакторами, базами данных), и профессиональными, которые применяются в системах автоматизированного проектирования, художественном дизайне или полиграфии. Сектор домашних компьютеров и соответственно домашних видеокарт растет сейчас наиболее динамично. Самое важное свойство домашних видеоадаптеров — поддержка технологий мультимедиа. От них ждут воспроизведения видео (в первую очередь в стандарте MPEG) и трехмерной графики. Естественно предположить, что видеокарты для домашних компьютеров конфигурируются достаточно просто. Увы, это не всегда так. Например, чтобы сконфигурировать для работы с Windows 95 превосходную карту Matrox Mystique, предназначенную для рынка SOHO, придется повозиться пару часов. Наибольшие сложности возникают при выборе частоты регенерации, поскольку значения, которые берутся по умолчанию, весьма далеки от оптимальных. Обратите внимание на то, что настройка частоты регенерации для работы в среде DOS выполняется отдельно. Производитель видеоадаптера, вероятно, предполагал, что это будет делать сборщик компьютера или продавец. Однако в большинстве случаев продавцы, экономя время, лишь проверяют работоспособность адаптера, оставляя тонкую настройку пользователю. Может быть, это и к лучшему, поскольку в процессе эксплуатации наверняка эти драйверы придется устанавливать заново.

Видеоадаптер сегодня и завтра

Что такое видеоадаптер и для чего он нужен? Поскольку максимум информации о внешнем мире большинство из нас получает визуально, никто не рискнет отрицать, что видеоподсистема — один из наиболее важных компонентов персонального компьютера. Видеоподсистема, в свою очередь, состоит из двух основных частей: монитора и видеоадаптера. Созданием изображения на мониторе управляет обычно аналоговый видеосигнал, формируемый видеоадаптером. А как получается видеосигнал? Компьютер формирует цифровые данные об изображении, которые из оперативной памяти поступают в специализированный процессор видеоплаты, где обрабатываются и сохраняются в видеопамяти. Параллельно с накоплением в видеопамяти полного цифрового “слепка” изображения на экране данные считываются цифроаналоговым преобразователем (Digital Analog Converter, DAC). Поскольку DAC обычно (хотя и не всегда) включает собственную память произвольного доступа (Random Access Memory, RAM) для хранения палитры цветов в 8-разрядных режимах, его еще называют RAMDAC. На последнем этапе DAC преобразует цифровые данные в аналоговые и посылает их на монитор. Эта операция выполняется DAC несколько десятков раз за одну секунду; данная характеристика называется частотой обновления (или регенерации) экрана.

Согласно современным эргономическим стандартам, частота обновления экрана должна составлять не менее 85 Гц, в противном случае человеческий глаз замечает мерцание, что отрицательно влияет на зрение. Даже подобная упрощенная схема, описывающая механизм работы универсального видеоадаптера, позволяет понять, чем руководствуются разработчики графических ускорителей и плат, когда принимают те или иные технологические решения. Очевидно, что здесь, как и в любой вычислительной системе, есть узкие места, ограничивающие общую производительность. Где они и как их пытаются устранить? Во-первых, производительность тракта передачи данных между памятью на системной плате и графическим ускорителем. Эта характеристика зависит в основном от разрядности, тактовой частоты и организации работы шины данных, используемой для обмена между центральным процессором, расположенным на системной плате компьютера, и графическим ускорителем, установленным на плате видеоадаптера (впрочем, иногда графический процессор интегрируется в системную плату).

В настоящее время шина (а точнее, порт, поскольку к нему можно подключить только одно устройство) AGP обеспечивает вполне достаточную и даже избыточную для большинства приложений производительность. Во-вторых, обработка поступающих данных графическим ускорителем. Повысить скорость этой операции можно, совершенствуя архитектуру графического процессора, например, внедрив конвейерную обработку, когда новая команда начинает выполняться еще до завершения выполнения предыдущей. Производители увеличивают разрядность процессоров и расширяют перечень функций, поддерживаемых на аппаратном уровне; повышают тактовые частоты. Все эти усовершенствования позволяют значительно ускорить заполнение видеопамяти графическими данными, готовыми для отображения на экране. О конкретных реализациях будет рассказано ниже в разделе “Законодатели мод”. И, в-третьих, обмен данными в подсистеме “графический процессор — видеопамять — RAMDAC”. Здесь также существует несколько путей развития. Один из них — использование специальной двухпортовой памяти, VRAM, к которой можно одновременно обращаться из двух устройств: записывать данные из графического процессора и читать из RAMDAC. Память VRAM довольно сложна в изготовлении и, следовательно, дороже других типов. (Есть еще один вариант двухпортовой памяти, впервые примененный компанией Matrox — Window RAM, WRAM, — обеспечивающий несколько более высокую производительность при себестоимости на 20 % ниже) Поскольку использование двухпортовой памяти дает ощутимый прирост производительности лишь в режимах с высокими разрешениями (1600х1200 и выше), этот путь можно считать перспективным лишь для видеоускорителей высшего класса. Еще один способ — увеличить разрядность шины данных. У большинства производителей разрядность шины данных достигла 128 бит, то есть за один раз по такой шине можно передать 16 байт данных. Еще одно, довольно очевидное решение, — повысить частоту обращения к видеопамяти. Стандартная для современных видеоадаптеров память SGRAM работает на тактовой частоте 100 МГц, а у некоторых производителей уже используются частоты 125 и даже 133 МГц. Для чего все это нужно? Чем быстрее подготовленные графическим процессором данные поступают в RAMDAC и преобразуются в аналоговый сигнал, тем больший их объем за единицу времени будет “конвертирован” в изображение, что позволяет повысить его реалистичность и детализацию.

Назначение устройства

Устройство, которое называется видеоадаптером (или видеокартой, видеоплатой, видимокартой, видюхой, видео), есть в каждом компьютере. В виде устройства, интегрированного в системную плату, либо в качестве самостоятельного компонента. Главная функция, выполняемая видеокартой, — преобразование полученной от центрального процессора информации и команд в формат, который воспринимается электроникой монитора, для создания изображения на экране. Монитор обычно является неотъемлемой частью любой системы, с помощью которого пользователь получает визуальную информацию. Таким образом, связку видеоадаптер и монитор можно назвать видеоподсистемой компьютера. То, как эти компоненты справляются со своей работой, и в каком виде пользователь получает видеоинформацию, включая графику, текст, живое видео, влияет на производительность как самого пользователя и его здоровье, так и на производительность всего компьютера в целом.

Вот почему при покупке компонентов видеоподсистемы необходимо сделать разумный выбор. Речь далее пойдет только о PC платформе, с используемой операционной системой Windows 95 или NT. Почему? Просто потому что эта платформа и ОС доминируют. Если у Вас устаревший компьютер, который используется в качестве печатной машинки в текстовом режиме, то, скорее всего, проблем с видеоподсистемой у Вас нет, улучшить в этом случае или что-то оптимизировать практически невозможно.

Dfx Voodoo3 3000

Буквально на днях мы рассмотрели новинку, самую " низшую" плату в линейке от 3dfx — видеокарту Voodoo3 2000. Следующей после нее идет Voodoo3 3000, которая довольно сильно отличается от своей сестры. Прежде всего — частотой, на которой она работает, 166 МГц (а не 143, как у Voodoo3 2000), а также встроенным в чипсет RAMDAC в 350 Мгц (а не 300, как у 2000-го чипсета). Данная модель также имеет функцию ТВ-выхода.

Видеоплата имеет такое же расположение элементов, что и ее предшественница, отличие заключается в более быстрой 6-ти памяти, а также в присутствии микросхемы, отвечающей за ТВ-выход. Отметим наличие большого радиатора из белого сплава на чипсете, который уже не приклеен к чипу, а крепится к карте на двух штифтах. Voodoo3 3000 имеет 16 мегабайт SDRAM памяти и AGP-конструктив.

Немного о радиаторе. Когда недели 3 назад я впервые увидел фотографию Voodoo3 3000 с такой конструкцией, я подумал, что, наверно, это все же опытный образец, для которого не нашли серийно выпускаемого радиатора, а, оторвав кусок какой-то арматуры, прикрепили к плате, насколько нелепо и странно он выглядел. Тем не менее, все же это серийно выпускаемая деталь, точно подогнанная под видеокарту. Да и эффект от нее несомненный, учитывая суммарно большую площадь ребер у этого радиатора. Конечно, мы к таким размерам охлаждающих устройств еще не привыкли, поэтому и удивляемся такой конструкции. В коробке с картой можно найти три игры: Epic's Unreal (Tournament), Interplay's Descent 3 (for Voodoo3 only), Electronic Art's Need For Speed III. Вообще, данная видеокарта представляет собой лишь более скоростной вариант ранее рассматриваемой Voodoo3 2000, и мы сделаем упор на сравнение скоростей работы плат. Но и про качество изображения в некоторых популярных играх постараемся тоже не забыть. Тестировочная станция осталась той же: системная плата Chaintech 6BTM (440BX); процессор Intel Pentium II 450; оперативная память 128 Mb PC-100; монитор Nokia 447Xav (17" ); операционная система Windows 98.

Как и в прошлый раз, при установке Voodoo3 2000, драйвера и на трехтысячную плату установились без осложнений (версия осталась прежней от 20 марта 1999 года). Для установки более высоких частот работы видеокарты (разгона) мы использовали свежую версию программы Voodoo3 Overclock Property Page (автор Gary Peterson), которая управляется вкладкой в драйверах. Как видим, кроме установки частот работы чипсета и памяти и включения режима sync, здесь можно выбрать режим работы видеокарты в соотношении производительность-качество. Что это дает — мы рассмотрим ниже в разделе исследования качества 3D-графики. Все остальные параметры драйверов ничем не отличаются от рассмотренных нами в обзоре по Voodoo3 2000: имеются раздельные регулировки для Glide/OpenGL и Direct3D с возможностью включения тройной буферизации и MIP-мэппинга.

Коротко рассмотрим работу этой платы в 2D-графике. Как и следовало ожидать, скорость ничуть не изменилась, по сравнению с Voodoo3 2000, а, следовательно, и с Banshee. Ниже представлены соответствующие диаграммы испытаний в WinBench 99 при разрешении 1024х768 в 16-битном цвете: Хотя частота RAMDAC и увеличилась до 350 MHz, существенных отличий от Voodoo3 2000 я не заметил. Правда, в разрешении 1280х1024 все же смотрится весьма четко, и глаза после длительной работы в этом разрешении совсем не устают. К сожалению, мой монитор разрешение 1600х1200 поддерживает весьма ограниченно, поэтому судить о качестве 2D в 1600х1200 мне трудно.

Тем не менее, мы повторим наш вердикт о том, что Voodoo3 по качеству и скорости 2D как игровая видеокарта практически лидирует среди аналогов (за исключением Matrox G200, который по скорости все еще впереди). Затем мы рассмотрим работу Voodoo3 3000 в 3D-графике и, прежде всего, с точки зрения скорости. Производительность Voodoo3 3000 будет сравниваться с картами на следующих чипсетах: nVidia Riva TNT2 (ASUS AGP-V3800); 3dfx Voodoo3 2000; ATI Rage 128 (ATI Rage Fury). Как обычно, мы представим на суд читателей результаты двух видов тестирования.

Во-первых, на фиксированной частоте процессора Pentium II в 450 МГц производится испытание в разрешениях от 640х480 до 1280х1024 c 16-битной глубиной цвета тремя инструментами: 3D Mark MAX (DirectX); Quake2 (massive1. dm2) OpenGL); Incoming (DirectX). Результаты по тесту 3DMark 99 MAX при тестировании с процессором Intel Penium III получились следующими: 640x480800x6001024x7681280x1024 3DMark 99 MAX4532452844654188. Во-вторых, на трех (450, 300 и 233 МГц) частотах процессора Intel Pentium II снимаются скоростные показатели видеокарты при помощи 3DMark 99 MAX, что дает нам возможность определить степень зависимости от процессора быстродействия видеокарты: Мы получили результаты Voodoo3 3000, не только работающей на номинальной (166 МГц) частоте, но и разогнанной до 195 МГц (вообще-то, она работает и на 198 МГц, но лучше немного перестраховаться).

На вышеприведенном скриншоте программы для разгона данная частота 195 МГц присутствует. Учитывая надежность работы видеоплаты в этом режиме (карта гонялась довольно долго при наличии принудительного внешнего охлаждения), мы в наших выводах будем учитывать значения, также полученные в результате разгона. Что же можно сказать относительно скорости работы Voodoo3 3000? Примерно то же, что и сказано было ранее о Voodoo3 2000: скорость потрясает воображение, в режиме работы на 195 МГц вообще на сегодняшний день равных ей нет (с учетом даже протестированной ранее платы на базе Riva TNT2 от ASUS). Но при работе на штатной частоте 166 МГц Voodoo3 3000 немного уступает ASUS V3800 (чипсет Riva TNT2, частота работы 140/150 Мгц на чипсете и памяти соответственно) в игре Incoming, которая характеризует работу видеокарты в Direct3D. Во всех иных тестах Voodoo3 3000 лидирует даже в штатном режиме. Однако же, повторю, что видеокарта дает явный прирост в скорости только на мощнейших процессорах (от 450 МГц) и в высоких разрешениях (от 1024х768 и выше). С другой стороны, и на более слабых процессорах Voodoo3 3000 (как и Voodoo3 2000) не уступает по скорости Voodoo2 SLI. Поэтому с точки зрения скоростных показателей обе разновидности Voodoo3 можно рассматривать как замену Voodoo2 SLI, причем разница между Voodoo3 2000 и 3000 на слабых процессорах практически ничтожна, что ставит 2000-ю модель в более выгодное положение.

Вывод такой: при цене карты, близкой к 200$ (а это примерная цена видеоплат на Riva TNT2), позиции Voodoo3 3000 уже не столь безоблачны, как у Voodoo3 2000 в своей ценовой нише. Скорость 3000-й модели на номинальной частоте уже не является безусловно лидирующей. В режиме разгона Voodoo3 3000 пока недосягаема, но, во-первых, мы не знаем, до каких частот будут разгоняться видеокарты на Riva TNT2, а во-вторых, не для всех пользователей разгон приемлем ввиду либо затрудненного охлаждения видеокарты, либо из-за принципиальных убеждений.

А теперь поговорим о качестве в 3D-графике. Здесь мы остановимся немного подробнее. Отчасти из-за того, что появилась новая версия утилиты Voodoo3 Overclocker, которая обещает эффективный способ повышения качества изображения, выдаваемого платой, а отчасти из-за появления патчей для популярных игр. Здесь уместно будет сказать о следующем. В комплекте с Voodoo3 3000 поставляются как раз те две игры (Unreal и Need For Speed III), которые не запускались на Voodoo3 2000. Очевидно, это свежие версии, исправленные для работы на Voodoo3. Так оно и есть. Версия игры Unreal — 2.22r, версию Need For Speed III посмотреть не удалось, но тот факт, что в списке видеокарт, которые она знает, есть уже Voodoo3, говорит о его более новой версии. Поэтому для любителей этих игр можно дать сразу совет: покупайте Retail — версии Voodoo3, тогда вы будете избавлены от необходимости искать соответствующие патчи.

Начнем же мы с рассмотрения утилиты Voodoo3 Overclocker версии 1.40 (скриншот с закладки можно увидеть выше). Как многие заметили, она, помимо изменения частоты видеокарты, дает возможность выбора режима работы: с максимальным качеством, но в ущерб скорости, либо наоборот. Но, к сожалению, ни через драйвера, ни через утилиту Voodoo3 Overclocker получить режим наибольшего качества реально не удалось. Качество картинки визуально совершенно не меняется. А судя по тому, какие переменные возникают в Registry после включения этого режима, должен появляться эффект сглаживания (anti-aliasing). Вот, например, на Voodoo2 SLI (драйвера от Metabyte v. 1.15) этот эффект работает. Ниже представлена сцена из игры Unreal, а также два куска из нее, иллюстрирующие работу Voodoo2 SLI с эффектом сглаживания и Voodoo3 в режиме максимального качества: 3dfx Voodoo2 SLI 3dfx Voodoo3 3000. И еще добавлю, что по моему личному мнению, даже при 16-битной глубине цвета, видеокарты на базе Riva TNT или Rage 128 дают более яркую цветовую насыщенность в 3D, нежели детище 3dfx. Следует также напомнить невозможность рендеринга в 32-битном цвете у Voodoo3.

Перед подведением итогов хочу сказать пару слов о дополнительной функции, имеющейся у Voodoo3 3000, о TV-out или ТВ-выходе. При настройке драйверов для вывода изображения на телевизор следует пользоваться закладкой в настройках дисплея. При переключении в режим TV-out происходит автоматическое переключение экрана в режим 800х600 при частоте 60 Гц и вывод изображения на телевизор. Настройки позволяют выбрать тип сигнала, подаваемого на TV-out, а также отключить при этом вывод изображения на монитор. В заключении хочу сказать, что при наличии дополнительного охлаждения видеокарта Voodoo3 3000 может показать прекрасные результаты по скорости, полностью и с лихвой заменить Voodoo2 SLI практически на любом современном процессоре (если нет особых требований к качеству и скорости 2D). Но данная видеокарта не имеет столько положительных качеств, чтобы возвратить любовь фанов Riva TNT или Rage 128. Как уже было сказано, при цене, примерно равной стоимости видеокарт на базе Riva TNT2 (не говоря уж о Savage4 Pro), Voodoo3 не дает 32-битного цвета в 3D, полноценно не работает с AGP, не понимает больших текстур. Однако пока нет массового выпуска игр, у которых реально работает 32-битный Z-буфер и существует необходимость работы с текстурами более 256х256, поэтому видеокарты Voodoo3 и им подобные могут пользоваться спросом из-за поддержки ими всех существующих игровых API, а значит, универсальности.

Matrox Millennium G400 MAX

Не так давно мы обсуждали видеокарту Matrox Millennium G400 16Mb, но время идет, и производители и разработчики не стоят на месте. Некоторые из них пытаются привлечь внимание анонсами своих новых продуктов, а другие просто продолжают разгонять имеющиеся. Например, 3dfx предлагает более скоростную Voodoo3 3500TV, NVIDIA — TNT2/Pro, ну а Matrox — Millennium G400 MAX. Кажущееся запаздывание этих продуктов на фоне скорого появления S3 Savage2000 и NVIDIA GeForce может быть объяснено как технологическими причинами, так и маркетинговыми. Возможно, фирмы столкнулись с трудностями при изготовлении чипов и только сейчас получили возможность более или менее постоянного выхода более шустрых микросхем, а возможно это — преднамеренная маркетинговая политика. Второй вывод имеет основания в виду того, что ни Matrox, ни 3dfx не планируют выпуск новых продуктов в этом году. А значит, фирмам надо что-то продавать и в этот промежуток времени. Цены на предыдущие модели (3dfx Voodoo3 2000, 3000, Matrox Millennium G400) уже успели несколько упасть, поэтому большую прибыль можно сделать только на дорогих 3dfx Voodoo3 3500TV и Matrox Millennium G400 MAX — впереди Рождество и сезонный рост спроса. Однако вернемся к Matrox Millennium G400 MAX. После того, как мы обозрели Matrox Millennium G400 16MB, в нашей лаборатории побывала и аналогичная плата с 32-ю мегабайтами памяти без DualHead. Но никакими выдающимися результатами она не блистала, единственное отличие — возможность использования разрешения выше 1024х768х32 в OpenGL, поэтому мы не сочли необходимым уделять отдельное внимание 32-мегабайтной версии. Но вот теперь, после появления у нас Matrox Millennium G400 MAX, мы будем использовать результаты Matrox Millennium G400 32MB в качестве отправной точки сравнительного анализа. Перед рассмотрением самой платы напомним, чем же по сути, отличается Matrox Millennium G400 MAX от Matrox Millennium G400. Отличие в одном — частотах работы самого чипа и памяти. Обычный Matrox G400 работает на 125/166 МГц (первое число — частота чипа, а второе — памяти), а Matrox G400 MAX — на 150/200 МГц.

Микросхема, отвечающая за разделение видеосигнала на два вывода, имеет приклеенный маленький игольчатый радиатор. На плате также есть разъемы под дочернюю карту Matrox Rainbow Runner Studio " G". Напомним особенности видеокарт семейства Matrox G400. Прежде всего, это 256-битная архитектура DualBus (двойная шина). В основу G400 положена 128-разрядная двойная шина чипсета G200, но при этом удвоена ширина полосы пропускания графического движка. Таким образом, Matrox выпустила первую карту, рассчитанную на широкий круг потребителей, с 256-разрядной шиной. Эта архитектура представляет собой объединение двух однонаправленных 128-разрядных шин, работающих параллельно. Система уплотнения данных управляет буферами данных, чтобы обеспечивалась непрерывная передача данных по внутренним шинам.

Однако надо иметь в виду, что потенциал этой двойной шины ограничивается пропускной способностью внешней 128-разрядной двунаправленной шины памяти. В предыдущем материале по Matrox G400 мы писали, что частота работы памяти не зависит от частоты чипсета, поэтому при использовании более быстрой памяти можно получить существенный прирост по скорости, прежде всего в 32-битном цвете. Однако, опыт показал, что Matrox синхронизировал частоты чипа и памяти, поэтому даже при самой быстрой памяти мы ограничены возможностями по разгону чипа. Отметим и еще один момент. Это появление в официальных сообщениях от Matrox термина мультитекстурирование и заявление о поддержке этого способа наложения текстур, чего раньше не было, и мы догадывались о его поддержке только по термину " 3D rendering array processor".

Matrox G400 предоставляет нам уникальную технологию рельефного текстурирования с использованием карт окружающей среды (Environment mapped Bump mapping). Всем нам хорошо известно, что в ныне существующих 3D-играх все поверхности гладкие и только наше воображение, основываясь на рисунках текстур, дает восприятие рельефности, например стен. Обратите внимание, что почти у всех 3D-шутеров сюжет разворачивается либо в городе, либо в помещениях. Естественные пещеры в играх практически отсутствуют (исключение, пожалуй, составляет Unreal, где мастерски нарисованные текстуры и более-менее изломанный рельеф гор дают эффект натуральности).

Дело в том, что без использования методов рельефного текстурирования показать низкие неровные своды невозможно. Также Matrox любит показывать в качестве примера использования Environment mapped Bump mapping поверхность воды в открытом водоеме, где мы можем реально видеть рябь и даже волны. К сожалению, пока только одна игра Rage Expendable использует этот восхитительный эффект. Хотя перспектива применения Environment mapped Bump mapping видится гораздо шире — в реальном мире рельефных или шероховатых поверхностей намного больше чем гладких. Естественно возникает вопрос: почему бы производителям игр не наброситься сразу на эту методику, делающую игры более фотореалистичными? Ответ банален, как и в случае с технологией сжатия текстур S3TC: пока ту или иную технологию поддерживает только избранные чипсеты, никто не станет делать игры, не рассчитанные на широкое использование на всех акселераторах. Вот появись еще пара чипсетов с поддержкой Environment mapped Bump mapping, то, думаю, массовый выход игр с рельефными текстурами стал бы реальностью.

К сожалению, должен отметить, что пока никто не заявил о поддержке Environment mapped Bump mapping в своих чипсетах, хотя эта технология уже присутствует в DirectX 7.0. Так что же такое Environment mapped Bump mapping? Это аппаратное ускорение рельефного текстурирования с использованием карт окружающей среды. Environment mapped Bump mapping представляет собой комбинирование трех различных текстурных карт для каждого пикселя: карты рельефа, карты окружающей среды и базовой карты. Карта рельефа представляет собой карту высот в форме полутонового черно-белого побитового изображения. Эта информация о высотах преобразуется в карту, содержащую значения смещений для каждой координаты текселя рельефной текстуры. Эти значения считываются первым блоком обработки текстур и затем используются блоком обработки рельефной карты для сдвига координат карты окружения. Затем происходит выборка текселей по смещенным координатам карты окружения, и передаются во второй блок обработки текстур. Тексели карты окружения, имеющие отклонения в координатах, хранятся в пиксельном кеше. На этом завершается первый проход. Во втором проходе тексель из карты окружения выбирается первым текстурным блоком, соответствующий тексель из базовой текстуры выбирается вторым текстурным блоком. Они смешиваются, в результате получается рельефный тексель.

А теперь вернемся к конструктивным особенностям Matrox Millennium G400 MAX. Сразу бросается в глаза наличие двух разъемов для вывода видеосигнала. Ну, про первый из них все ясно, оно для подключения основного монитора, а вот второе гнездо — особенное. Существует два варианта его использования, что можно увидеть в драйверах. Первый вариант — TV-out. В комплекте с платой поставляется переходник " VGA – TV-out", который одним концом подключается ко второму гнезду VGA, а на другом находятся разъемы S-Video и Composite для подключения к телевизору или видеомагнитофону. Таким образом, можно получить изображение на телевизоре очень хорошего качества, при этом картинка на мониторе остается стабильной и не портится, как это происходит на многих картах с TV-out.

Второй вариант, наиболее интересный — это возможность подключения второго монитора, который может быть задействован двумя способами: использование второго монитора как дублера первого (то есть на втором полностью повторяется изображение с первого), использование второго монитора для расширения рабочего стола. Этот вариант мы рассмотрим подробнее. При активизации режима расширения рабочего стола мы получаем следующую закладку в драйверах: В данном случае мы можем выбрать один из двух мониторов и конкретно для него осуществить настройки по разрешению, частоте регенерации и др. То есть, Matrox Millennium G400 MAX имеет два раздельных модуля CRTC (Cathode Ray Tube Controller), которые позволяют использовать два монитора независимо друг от друга. Таким образом, к Matrox Millennium G400 MAX можно подключать совершенно разные по своим характеристикам мониторы (кроме LCD, для них требуется отдельный модуль).

Приступим к тестированию. Компьютер, на котором мы испытываем видеокарты, имеет следующую конфигурацию: процессор Intel Pentium III — 500 MHz; системная плата ASUS P3B-F (i440BX); оперативная память 128 Mb PC-100; жесткий диск Quantum FB CR 6. 4GB; монитор ViewSonic P810 (21'); операционная система — MS Windows 98. Рассмотрим процесс установки видеокарты Matrox Millennium G400 MAX. Для тестирования мы использовали последние опубликованные драйвера версии 5. 25. Также мы получили и бета-версии новых драйверов версии 5.30 и мини-драйвера TurboGL. Испытав версию 5.30, мы получили схожие с 5.25 результаты в DirectX и небольшой прирост скорости в OpenGL. При использовании же TurboGL-драйвера, прирост производительности в OpenGL был существенен. Поэтому мы использовали официально вышедшие драйвера версии 5.25 и отдельно — бета-версию мини-драйвера TurboGL.

К сожалению, должен отметить, что драйвера не имеют почти никаких настроек 3D, поэтому пришлось установить утилиту G400 Tweak v. 004. Эта программа позволяет регулировать Vsync (синхронизацию частот дискретизации карты и кадровой развертки монитора), устанавливать 32-битный Z-буфер, включение Environment mapped Bump mapping и другое. Тестирование проводилось при отключенном Vsync.

Мы и подошли вплотную к рассмотрению результатов тестирования. Начнем мы с 2D-графики. Скоростные показатели мы получили при помощи Winbench99 в разрешении 1600х1200 при 32-битном представлении цвета. Можно убедиться, что по скорости практически никакого отличия от ранее протестированной Matrox Millennium G400 16MB нет. На сегодня платы серии Matrox G400 остаются лидерами по скорости в 2D среди игровых карт (да и профессиональных тоже). Ну, а про качество 2D даже говорить много не надо — оно просто отличное. 1600х1200 — и все четко и прекрасно видно. Вывод очевиден: Matrox Millennium G400 MAX в 2D-графике имеет бескомпромиссное лидерство! Любой профессионал, работающий с высокоточной графикой и тончайшими линиями, несомненно, останется доволен этой картой. А что же у нас с 3D? Кажется, при использовании Matrox Millennium G400 MAX появляется возможность получить и отличное 2D, и мощнейшее 3D. Оправдал ли Matrox Millennium G400 MAX наши ожидания? Ниже мы ответим на этот вопрос. Для получения комплексной картины скорости работы этой платы в 3D мы использовали ряд программ:

FutureMark 3DMark 99 MAX — синтетический тест для разностороннего исследования работы платы в Direct3D (Direct X 6. 1);

Monolith Shogo — игра 3D-шутер, позволяющая оценить работу платы в Direct3D (использовалась демо Revshogo);

Rage Expendable — игровой бенчмарк, позволяющий оценить работу платы в Direct3D, а также увидеть в деле рельфное текстурирование у Matrox Millennium G400 MAX;

id Software Quake2 — известный 3D-шутер, позволяющий исследовать работу платы в OpenGL (используется демо massive1. dm2);

id Software Quake3 Test 1. 08 — тестовое демо 3D-шутера, позволяющее исследовать работу платы в OpenGL при различных стандартных режимах: Normal, High Quality, Fast и Fastest (используется демо q3demo1. dm3).

Тестирование проводилось на двух системах: на базе процессоров Intel Pentium III и AMD K6-2. Приводить результаты тестирования видеокарт последнего поколения на системе К6-2 нет никакого смысла, поскольку почти во всех режимах наблюдается нехватка мощности процессора и, по сути, измеряется не мощность видеокарты, а CPU. И в дальнейшем тестировании мы исключим эту платформу из наших инструментов исследования. Поклонникам AMD мы же посоветуем немного подождать и обратить свое внимание на новые процессоры Athlon, которые, безусловно, дадут прикурить современным видеокартам.

Matrox Millennium G400 MAX мы будем сравнивать с Matrox Millenium G400 32MB, 3dfx Voodoo3 3500TV и Creative 3D Blaster Riva TNT2 Ultra на базе чипа NVIDIA Riva TNT2 Ultra. Эти карты (кроме Matrox Millennium G400) относятся примерно к одному ценовому диапазону (3dfx Voodoo3 3500TV стоит немного дороже, но она имеет дополнительные ТВ-функции). Исследоваться будут и режимы разгона, поскольку Matrox Millennium G400 MAX, имеющий частоты по умолчанию 150/200 МГц, хорошо и устойчиво работает на 170/225 МГц (напомню, что частоты чипа и памяти связаны, и нет никакой возможности их менять раздельно).

Как известно, производительность плат от Matrox в OpenGL всегда вызывала нарекания пользователей, особенно в свете почти годичного периода времени, прошедшего с момента выхода Matrox Millennium G200 и до появления окончательной версии ICD OpenGL для этой карты. Тем не менее, должен отметить, что Matrox стала наращивать темпы выхода новых, улучшенных версий OpenGL-драйверов. В данный момент ожидается выход уникального драйвера Matrox TurboGL, являющегося мини-драйвером, предназначенным для игр класса Quake2 и Quake3. Что же можно сказать, глядя на эти результаты? Пойдем по порядку. В тесте 3D Mark99 MAX плата Matrox Millennium G400 MAX оказалась примерно на уровне NVIDIA Riva TNT2 Ultra, явно обогнав 3dfx Voodoo3 3500TV (результаты в разрешении 1600х1200 при 16-битном цвете показались нам несколько странными, однако должен отметить, что сам тест ведет себя подчас непредсказуемо в этом разрешении, повторное тестирование может выдать цифры с погрешностью 50-70 %, поэтому мы даем эти данные для ориентира). А вот в 32-битном цвете на том же тесте наша карта показала отличные результаты! В игре Shogo плата Matrox Millennium G400 MAX оставила далеко позади 3dfx Voodoo3 3500TV и оказалась также на одном уровне с NVIDIA Riva TNT2 Ultra. А вот в Expendable картина изменилась. На высоких (выше 1024х768) разрешениях Matrox Millennium G400 MAX сильно обогнал NVIDIA Riva TNT2 Ultra, однако чуть отстала от 3dfx Voodoo3 3500TV (явно сказывается более выгодный для 3dfx-карт режим мультитекстурирования). Зависимость производительности платы от частоты процессора показывает нам на явную невыгодность приобретения такой мощной платы владельцам низкоскоростных процессоров (если скорость не поднимается выше 34, а то и 28 fps, то можно купить и плату подешевле, которая даст примерно такую же скорость). Падение производительности при включении режима Environment mapped Bump mapping не столь критично, чтобы отказываться от такой красоты, однако и не безболезненно. Рассмотрим теперь ситуацию в OpenGL. Как можно увидеть, только TurboGL-драйвер, официальный выход которого запланирован на ближайшие дни, позволяет разогнанному Matrox Millennium G400 MAX подняться до уровня nVidia Riva TNT2 Ultra и до 3dfx Voodoo3 3500TV.

Все же, OpenGL-драйвер у Matrox, видимо, еще не достаточно оптимизирован. Также хочу обратить внимание на то, что TurboGL-драйвер дает лучшие результаты в избранных разрешениях, прежде всего в 800х600 и 1024х768, где прирост в скорости относительно ICD OpenGL 5.25 максимальный. К сожалению, портит общую картину и отсутствие корректной работы ICD OpenGL в Quake2 от Matrox в разрешении 1280х960. В целом же, результаты у Matrox Millennium G400 MAX очень хорошие — владельцы быстрых процессоров не будут разочарованы этой платой. Затрагивая тему качества, могу сказать кратко, что нареканий никаких нет, все четко и красиво. Подробно мы рассматривали этот вопрос в нашем обзоре Matrox Millennium G400.

И в заключение коснусь вопроса DVD-проигрывания. С платой Matrox Millennium G400 MAX поставляется Matrox DVD-Player, который обеспечивает снижение загрузки центрального процессора при декодировании MPEG2 до 55 %, что дает нам основания для положительных эмоций. Качество изображения — отличное, видеопоток идет ровно, без рывков, и при этом процессор загружен не на 85 – 100 %, а всего на 53 – 55 %. То есть, часть функций по декодированию видеокарта действительно берет на себя. Подведем итоги. Видеоплата Matrox Millennium G400 MAX, обладая ценой примерно на уровне карт на базе NVIDIA Riva TNT2 Ultra, но меньшей, чем у 3dfx Voodoo3 3500TV (заметим, что количество памяти у Voodoo3 в 2 раза меньше), имеет скоростные показатели примерно на уровне вышеназванных плат, обладая при этом рядом достоинств. Во-первых, это отличное 2D, которое устроит даже профессионалов, во-вторых, — выход на два приемника видеосигнала, которыми могут быть либо два монитора, либо монитор и телевизор. Плюс прекрасное качество изображения как в 3D, и наличие технологии Environment mapped Bump mapping. Мы смело можем рекомендовать эту плату владельцам мощных процессоров, на которых плата сможет показать свою силу, а также тем, у кого- либо большой монитор, либо пара мониторов, на которые можно разнести общий рабочий стол.

Super VGA

Для большинства применений разрешение стандарта VGA вполне достаточно. Однако программы, ориентированные на графику, работают значительно лучше и быстрее (бывают случаи, когда они даже не инсталлируются, если установленное разрешение или видеокарта не соответствуют их возможностям), если информационная плотность экрана выше. Для этого необходимо повышать разрешение. Таким образом, стандарт VGA развился в так называемый стандарт Super VGA (SVGA). Стандартное разрешение этого режима оставляет 800х600 пикселей.

Отметим закономерность: при объеме видеопамяти 256 Кб и SVGA-разрешении можно обеспечить только 16 цветов; 512 Кб видеопамяти дают возможность отобразить уже 256 цветовых оттенков при том же разреше-1ии. Карты, имеющие 1 Мб памяти, а это сейчас уже стало обычным явле-1ием, позволяют при этом же разрешении достичь отображения 32768, i5536 (HiColor) или даже 16, 7 млн. (TrueColor) цветовых оттенков.

HiRes VGA

Стандарт HiRes VGA (High Resolution — высокое разрешение) был также разработан фирмой IBM. В режиме 8514/А можно повысить разрешение до 1024х768 пикселей. Имеет ли смысл такое разрешение или нет, зависит от многих факторов, которые будут пояснены ниже.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-03; Просмотров: 596; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.05 с.)
Главная | Случайная страница | Обратная связь